
7 Load Testing Mistakes
YOU DON’T WANT TO MAKE

Introduction
Load testing is one of the last pre-

production links in the development chain.

This makes it tempting to cut corners, rush

results, and just get testing underway so

you can move forward to launch.

However, there’s no argument that load

testing is a highly-complex undertaking.

Plan incorrectly, build scenarios that don’t

simulate a real production environment

accurately, or overload your load

generators – and at best you’ve lost the

time, money and resources involved in re-

running the test. At worst, you haven’t

realistically load tested your system – and

your long-anticipated launch can turn into

a disaster.

Leveraging thousands of hours of load

testing experience in organizations across

the globe, we put together the following list

of seven common load testing mistakes.

They could happen to anyone, but they

won’t happen to you once you’ve read this

eBook.

Without clearly-defined, quantifiable testing goals, load testing is a guessing game,
at best. Load testing goals need to be clearly defined based on business
requirements prior to running and measuring your test scenarios. Here are some
common testing goals you might want to consider:

Capacity per scenario

How many users should the system handle
per specific scenario?

Response Time per Activity

What is an acceptable response time for
each specific transaction? What’s the
maximum response time, averages, and
acceptable level of outliers?

Acceptable Percentage of Errors

For example, is a login error rate of 0.1%
acceptable for a banking application?

Goals per Type of User, Location,
Browser, and more 

Standart vs. Peak time Goals

Uptime Duration

Do you have different types of users (gold,
VIP) for whom you need to provide a
different level of service? Should a specific
user location be defined with different
goals?

Have you defined different response time
goals depending on time of day or peak
user activity?

Most production systems don’t run for
only 2-4 hours like a load test. What is
your system’s uptime and how do you
translate it to a runtime load testing goal?

Consider which of these goals are
relevant for your system and environment.
Only by defining specific load testing
goals like these will you be able to clearly
evaluate and report the results of your
performance testing.

Throughput

What is the volume of data you expect your
system to handle? For example, if users
need to download 1Gb files, how much data
should the system handle under peak load?

Not Defining
Clear Goals

- -

-

-

-

-

-

M i s t a k e # 1

A real-life production environment has
nearly endless components – servers,
databases, hardware, 3rd party tools,
integrations, background processes that
run periodically and much more. Because
of this, a key load testing challenge is
simply building a test environment that
simulates the actual production
environment.

Without investing time and thought in
creating a realistic environment, you can
waste massive efforts testing something
that is not real. Make sure your testing
environment is:

Similar to Production

Your test environment should mimic as
closely as possible the real production
environment in terms of hardware,
configuration, memory, databases, load
balancers and so on. You can start small
with testing using a reduced environment,
but keep in mind that you must simulate a
wide-scale production system.

Populated with Data

Integrated with 3rd party apps

Running periodic or background
processes 

Load testing a database system with 100
records is not the same as a real production
system with 20 million records. You need to
invest the time to generate a quantity of
data that resembles the real production
system.

Testing should validate your system with
any 3rd party applications (credit cards,
order fulfillment, etc.) used in production.
The bottleneck you’re searching for may be
hiding there! At the same time, be sure not
to create any real ‘business’ activity in your
tests such as cash transfers, purchases, etc.

‘Hidden’ processes such as cleanup, backup,
reporting, aggregation, or data exports are
often part of a production environment., but
are often forgotten during performance
testing.. These tasks may consume
significant machine resources and
dramatically affect system behavior.Isolated

Your load testing environment should be
completely isolated from other activities. If
additional users store data on your testing
system or run processes you’re unaware of,
your load testing results will be skewed.

Not Creating a Realistic

Test Environment

-

-

-

-

-

M i s t a k e # 2

It’s very tempting to compromise when
building load test scenarios. Even when
facing budget, resource or time
constraints – be careful where you cut
corners, so as not compromise the
results of your load testing. Here are
two common hazards you should
avoid.

Number of Users

Load testing a system with 100,000 users
requires several machines, which may
not be available. So why not use 10,000
users instead and have each perform a
transaction every second, as opposed to
a 10 second think time for the ‘real’
100,000 user test?

The problem is that the two scenarios
differ significantly. The server doesn’t
need to maintain the same number of
connections for 10,000 users, memory
requirements for 100,000 versus 10,000
users are vastly different, and so are
database queries. You can’t cut corners
with the number of users and expect to
realistically test performance.

Data randomazation

It’s much easier to generate 100 user profiles
than 10,000 profiles. However, if the same 100
users repeatedly access the system and
their credentials data is cached, you’ll never
have the effect of 10,000 different users
accessing the system.

Cutting Corners

M i s t a k e # 3

The objective of load testing is to simulate
a large number of users in a realistic
environment. However, experienced load
testers understand that to begin testing
with a final load goal inevitably leads to
failure.

Why? Well, let’s assume that your final
testing scenario is 10,000 users from five
locations, over three types of devices, and
with 10 different usage scenarios. If you run
this up front, it will be next to impossible to
isolate errors when they arise.

Instead, start with one user, one location,
and one device. Create a testing scenario
that grows gradually, and closely monitor
for errors at each stage. Here are some
more tips for “starting small”:

No load at all

Start testing web pages without any load
test tool at all. There are several tools such
as WebPageTest.org that you can use. This
will allow you to verify that there are no
issues on your site. For example, if a single
page loads in 20 seconds, there’s no point of
running a load test, and it should first be
fixed.

Single scenario + single user

Single scenario, minimal load

Increase loads and/or mix scenarios

Before combining scenarios or generating
load, run each scenario on its own for a full
hour. This will help you identify issues such
as memory leaks, errors, test data, and your
actual test script.

Test each scenario with a small number of
threads (e.g. 5 virtual users) before you
jump into generating load. This will help you
ensure that there are no deadlocks (on the
simple situations) or other issues that affect
your application just because a few users
are working in parallel.

After verifying that the basic aspects of your
scenario are working properly, you can start
increasing the load and also consider
creating a simple mix of scenarios. You can
either increase the load for each scenario
until you reach its maximum requirements,
or start mixing scenarios first and only then
increase the load.

Starting too Large

M i s t a k e # 4

Load generator machines, while serving
your testing goals, can also skew your test
results. An overloaded load generator
machine can create a situation where no
load is generated at all, or load is
generated but with skewed results. To
detect whether load generators are
overloaded, check:

Load generator machine resources

- CPU utilization and memory usage

- Context switches per second - a high
context switching number indicates that the
- CPU is less efficient, spending more time
on itself than performing its task

- Page faults - when this number is high, the
system is spending resources on writing
data to disk, indicating inefficiencies and
potentially harming performance

Transactions per second

Compare the load generator machine with
a ‘probing client’ machine – a separate
machine that executes a single virtual user.
Assume you increase the load size and see
that TX/sec value is not growing linearly. By
examining the TX/sec created by the
probing client and comparing it to the load
generator machine, you can determine
whether your load generator is having
trouble.

Disk queue length - while a queue for writing
to the disk will always exist, if this number
constantly increases it can indicate load
generator overload. If queue length
increases while load size remains constant,
the indication is even stronger.

Overloading Load
Generators

M i s t a k e # 5

Performance metrics and response time
are understandably the key focus in load
testing. But some system faults manifest
themselves through system errors that are
not so obvious - rather than a crash or a
drop in response time.

Consider what happens, for example, if
integration with an external tool or a
background process has stopped working.
Since this does not affect the user, it will not
be evident in the response time. Another
example would be an HTTP 500 error, which
occurs in only a small percentage of cases,
affecting only a small number of users.

To identify all system vulnerabilities related
to load, pay attention to errors and
suspicious behavior even when response
time seems perfect. For example:

User errors

Server-side errors

Wrong data

Errors sent by the server, which would be
viewed by users (such as HTTP 500), should
be viewable in your load testing tool.

Check server log files to find errors on the
server side, like exceptions or crashes of
server-side components or services.

In some cases, request-response flow and
response time will be fine, but the data
arriving from the server will be wrong. Make
sure you have data validation embedded in
your scripts to identify such cases.

Ignoring System Errors

M i s t a k e # 6

Re-running scenarios and comparing
results between runs are an integral part of
load testing. But when done multiple times,
while tweaking and adjusting different
parameters, application versions and test
settings - it can become a nightmare to
track the changes made in each test
execution.

After several runs, it’s easy to become
confused and forget which changes and
settings belong to which test run, and
whether your interpretation of results is
correct. Here are some key items to be
documented in each executed scenario,
which will help you keep track of your test
progress.

Scenario rational/objective

System under test settings

Test environment settings

RESULTS/CONCLUSIONS

Document the purpose of this specific
execution – what does it aim to check or
validate in relation to previous runs? What
are the expected outcomes? What is the
load size, and other key parameters that
were changed relative to other runs?

Which version/build of the software was
tested? Which specific fixes does it include?
In addition, take note of important
configuration and settings changes made in
the environment infrastructure or
configuration.

Note important or changed settings in load
generator machines and load testing tool
settings, such as changes in caching or gzip.

Record your own conclusions regarding
each run, noting assumptions regarding the
cause of issues and changes to be made in
order to isolate the problem.

Undocumented Testing /
Load Scenarios

M i s t a k e # 7

THE
BOTTOM
LINE

About
Radview

Professional load testing tools are

crucial to the success of your web site

or application – and can dramatically

impact your organization’s business as

a whole.

But even after you choose your tool of

choice, don’t forget that load testing is

only as reliable and accurate as the

testing environment and scenario.

Results from poorly-planned and

poorly-conceived testing are by

definition poor.

Take the time to create a detailed plan,

ask the difficult questions – and you’ll

already be well on the road to avoiding

application load testing mistakes.

RadView Software provides

WebLOAD, the world ś best value

commercial-grade load and

performance testing solution for

internet applications. Deployed

at over 3,500 customers,

WebLOAD helps launching

internet applications and with

confidence.

