

JavaScript Reference

Version 12.0

The software supplied with this document is the property of RadView Software and is furnished under a

licensing agreement. Neither the software nor this document may be copied or transferred by any means,

electronic or mechanical, except as provided in the licensing agreement. The information in this document is

subject to change without prior notice and does not represent a commitment by RadView Software or its

representatives.

WebLOAD JavaScript Reference Guide

© Copyright 2018 by RadView Software. All rights reserved.

November 2018, RadView Publication Number WL-PRO-0909-JRM84

WebLOAD, TestTalk, Authoring Tools, ADL, AppletLoad, WebFT, and WebExam, are trademarks or registered

trademarks of RadView Software IBM, and OS/2 are trademarks of International Business Machines

Corporation. Microsoft Windows, Microsoft Windows 95, Microsoft Windows NT, Microsoft Word for Windows,

Microsoft Internet Explorer, Microsoft Excel for Windows, Microsoft Access for Windows and Microsoft Access

Runtime are trademarks or registered trademarks of Microsoft Corporation. SPIDERSESSION is a trademark of

NetDynamics. UNIX is a registered trademark of AT&T Bell Laboratories. Solaris, Java and Java-based marks

are registered trademarks of Sun Microsystems, Inc. HP-UX is a registered trademark of Hewlett-Packard.

SPARC is a registered trademark of SPARC International, Inc. Netscape Navigator and LiveConnect are

registered trademarks of Netscape Communications Corporation. Any other trademark name appearing in

this book is used for editorial purposes only and to the benefit of the trademark owner with no intention of

infringing upon that trademark.

For product assistance or information, contact:

Toll free in the US:

Fax:

World Wide Web:

1-888-RadView

+1-908-864-8099

www.RadView.com

North American Headquarters: International Headquarters:

RadView Software Inc.

991 Highway 22 West, Suite 200

Bridgewater, NJ 08807

Email: info@RadView.com

Phone: 908-526-7756

Fax: 908-864-8099

Toll Free: 1-888-RadView

RadView Software Ltd.

13 Haamal Street, Park Afek

Rosh Haayin 4809249 Israel

Email: info@RadView.com

Phone: +972-3-915-7060

Fax: +972-3-915-7011

http://www.radview.com/
mailto:info@RadView.com
mailto:info@RadView.com

JavaScript Reference Guide  iii 

Table of Contents

Chapter 1. Introduction ... 1

WebLOAD Documentation ... 1

Typographical Conventions .. 3

Where to Get More Information ... 3

Online Help .. 4

Technical Support Website ... 4

Technical Support .. 4

Chapter 2. Introduction to JavaScript scripts.. 5

What are scripts? ... 5

WebLOAD scripts Work with an Extended Version of the Standard DOM 6

What is the Document Object Model? .. 7

Understanding the DOM Structure ... 8

DOM Objects Commonly Used in a script ... 10

WebLOAD Extension Set .. 12

When Would I Edit the JavaScript in My scripts? ... 13

Accessing script Components ... 14

Editing the JavaScript Code in a script .. 17

Accessing the JavaScript Code within the Script Tree .. 17

Using the IntelliSense JavaScript Editor ... 18

Chapter 3. Using the WebLOAD JavaScript Reference .. 23

HTTP Components ... 24

Collections ... 27

File Management Functions .. 28

Identification Variables and Functions .. 29

Message Functions.. 30

Objects .. 32

SSL Cipher Command Suite .. 33

Timing Functions .. 34

 iv  Table of Contents

Parameterization ... 35

Transaction Verification Components ... 36

Chapter 4. WebLOAD Actions, Objects, and Functions .. 37

AcceptEncodingGzip (property) .. 37

AcceptLanguage (property) .. 38

action (property) ... 39

Add() (method) ... 39

AuthType (property) .. 40

Async (property) ... 41

BeginTransaction() (function) ... 42

cell (object) ... 44

cellIndex (property) .. 46

CharEncoding (property) .. 47

checked (property).. 48

ClearAll() (method) .. 48

ClearCookiesAtEndOfRound (property) .. 48

ClearDNSCache() (method) .. 49

ClearSSLCache() (method) .. 49

ClientNum (property) .. 50

Close() (function) .. 52

CloseConnection() (method) ... 53

cols (property) ... 54

ConnectTimeout (property) .. 55

ConnectionSpeed (property) ... 55

content (property) ... 56

ContentLength (function) .. 57

ContentType (property) ... 58

ConvertHiddenFields(method) .. 58

CookieDomain (property) ... 59

CookieExpiration (property) ... 60

CookiePath (property) ... 60

CopyFile() (function) .. 61

CreateDOM() (function) .. 63

CreateTable() (function) ... 65

Data (property) ... 66

JavaScript Reference Guide  v 

DataFile (property) ... 67

DebugMessage() (function) ... 68

DecodeBinaryEnd (property) .. 69

DecodeBinaryNullAs (property) .. 70

DecodeBinaryStart (property) ... 70

defaultchecked (property) ... 71

defaultselected (property) ... 72

defaultvalue (property) .. 72

DefineConcurrent() (function) .. 72

Delete() (method) .. 74

Delete() (HTTP method) ... 74

Delete() (cookie method) .. 75

DeleteEmptyCookies (property) ... 76

DisableSleep (property) ... 76

DNSUseCache (property) .. 77

document (object) ... 78

ElapsedRoundTime (property) ... 79

element (object) ... 80

EncodeBinary (property) ... 82

EncodeFormdata (property) .. 82

EncodeRequestBinaryData (property) ... 83

EncodeResponseBinaryData (property) .. 84

encoding (property) .. 84

EndTransaction() (function) .. 85

EnforceCharEncoding (property) ... 87

Erase (property) .. 88

ErrorMessage() (function) ... 90

ErrorMessage (property) ... 91

EvaluateScript() (function) .. 91

event (property) .. 92

ExecuteConcurrent() (function) .. 92

extractValue()(function) ... 93

FileName (property) ... 94

FilterURL (property) .. 95

form (object)... 96

FormData (property) .. 97

 vi  Table of Contents

frames (object) ... 99

Function (property) .. 100

GeneratorName() (function) ... 101

Get() (method) ... 102

Get() (addition method) .. 102

Get() (cookie method) ... 103

Get() (transaction method) ... 104

GetApplets (property) .. 107

GetCss (property) ... 108

GetElementById() (function) ... 108

GetElementsById() (function) ... 109

GetElementByName() (function) .. 110

GetElementsByName() (function) .. 110

GetElementValueById() (function) .. 111

GetElementValueByName() (function) ... 112

GetEmbeds (property) ... 113

GetFieldValue() (method) .. 113

GetFieldValueInForm() (method) .. 114

GetFormAction() (method) ... 115

GetFrameByUrl() (method) ... 116

GetFrames (property) ... 117

GetFrameUrl() (method) .. 117

GetHeaderValue() (method) ... 118

GetHost() (method) .. 119

GetHostName() (method) .. 120

GetImages (property) ... 121

GetImagesInThinClient (property) .. 122

GetIPAddress() (method) .. 122

GetLine() (function) .. 123

GetLine() (method) ... 125

GetLinkByName() (method) ... 127

GetLinkByUrl() (method) .. 128

GetMessage() (method) .. 129

GetMetas (property) ... 130

GetOperatingSystem() (function) ... 131

GetOthers (property) .. 131

JavaScript Reference Guide  vii 

GetPortNum() (method) .. 132

GetQSFieldValue() (method) .. 133

GetScripts (property) .. 134

GetSeverity() (method) .. 134

GetStatusLine() (method) .. 135

GetStatusNumber() (method) ... 136

GetUri() (method) ... 137

GetXML (property) ... 138

hash (property).. 139

Head() (method) ... 139

Header (property) ... 140

host (property) .. 142

hostname (property) ... 142

href (property) ... 143

HttpCacheScope (property) .. 143

HttpCacheCachedTypes (property) ... 144

httpEquiv (property) .. 145

HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord (properties) 145

HttpsProxyNTUserName, HttpsProxyNTPassWord (properties) .. 146

id (property) .. 147

Image (object) .. 149

IncludeFile() (function) .. 150

Index (property) .. 152

InfoMessage() (function) .. 153

InnerHTML (property) .. 154

InnerImage (property) ... 155

InnerLink (property) .. 155

InnerText (property) ... 156

JVMType (property) ... 157

KDCServer (property) .. 158

KeepAlive (property) ... 159

KeepRedirectionHeaders (property) .. 160

key (property).. 160

language (property) .. 161

link (object) .. 162

load() (method) ... 163

 viii  Table of Contents

load() and loadXML() Method Comparison ... 164

LoadGeneratorThreads (property) ... 165

loadXML() (method) .. 167

location (object) ... 168

MaxLength (property).. 170

MaxPageTime (function) ... 170

method (property) .. 171

MultiIPSupport (property) .. 171

MultiIPSupportType (property) ... 172

MultiIPSupportProtocol (property) ... 173

Name (property) ... 174

NTUserName, NTPassWord (properties) ... 176

Num() (method) .. 177

onDataReceived (property) ... 177

onDocumentComplete (property) .. 179

Open() (method) ... 180

Open() (function) .. 183

option (object) .. 185

Options() (method) ... 186

OuterLink (property) ... 188

Outfile (property) ... 188

PageContentLength (property) ... 189

PageTime (property) .. 190

Parse (property) .. 190

ParseApplets (property) .. 191

ParseCss (property) .. 192

ParseEmbeds (property) .. 193

ParseForms (property) ... 194

ParseImages (property) .. 195

ParseLinks (property) .. 196

ParseMetas (property) .. 197

ParseOnce (property) ... 198

ParseOthers (property) .. 199

ParseScripts (property) .. 200

ParseTables (property) ... 201

ParseXML (property) ... 202

JavaScript Reference Guide  ix 

PassWord (property) .. 203

pathname (property) .. 204

port (property) .. 204

Post() (method).. 205

ProbingClientThreads (property) ... 208

protocol (property) ... 210

Proxy, ProxyUserName, ProxyPassWord (properties) ... 210

ProxyExceptions (property) .. 211

ProxyNTUserName, ProxyNTPassWord (properties) .. 212

Put() (method) ... 213

Range() (method) .. 215

ReceiveTimeout (property) ... 215

RedirectionLimit (property) .. 216

Referer (property) ... 217

remove() (method) .. 217

ReportEvent() (function) .. 218

ReportLog() (method) .. 219

RequestRetries (property).. 220

Reset() (method) .. 220

ResponseContentType (property) .. 221

RoundNum (variable) .. 222

row (object) .. 223

rowIndex (property) ... 224

SaveHeaders (property) ... 225

SaveSource (property) .. 226

SaveTransaction (property) ... 226

script (object) ... 228

search (property) ... 229

Seed() (method) ... 229

Select ... 230

Select() (method) .. 230

SelectSecondTimeout (property) .. 230

SelectSwitchNum (property) .. 231

SelectTimeout (property) ... 232

SelectWriteSecondTimeout (property) .. 233

SelectWriteSwitchNum (property) ... 234

 x  Table of Contents

SelectWriteTimeout (property) ... 234

selected (property) .. 235

selectedindex (property) .. 235

SendBufferSize (property) ... 235

SendClientStatistics (property) ... 236

SendClientStatisticsFilter (property) .. 236

SendCounter() (function) ... 237

SendMeasurement() (function) ... 238

SendTimer() (function) ... 239

Set() (method) .. 240

Set() (addition method) ... 240

Set() (cookie method) .. 241

SetClientType (function) .. 242

SetFailureReason() (function) ... 243

setTimeout() (function) .. 244

SetTimer() (function) .. 245

SevereErrorMessage() (function) .. 246

Severity (property) ... 247

Size (property) ... 247

Sleep() (function) .. 248

SleepDeviation (property) ... 249

SleepRandomMax (property) ... 250

SleepRandomMin (property) .. 251

src (property) ... 252

SSLBitLimit (property) ... 253

SSLCipherSuiteCommand() (function).. 255

SSLClientCertificateFile, SSLClientCertificatePassword (properties)................................... 256

SSLCryptoStrength (property) .. 258

SSLDisableCipherID() (function).. 260

SSLDisableCipherName() (function) ... 261

SSLEnableStrength() (function) .. 262

SSLEnableCipherID() (function) ... 264

SSLEnableCipherName() (function) .. 265

SSLGetCipherCount() (function) .. 266

SSLGetCipherID() (function) .. 267

SSLGetCipherInfo() (function) .. 269

JavaScript Reference Guide  xi 

SSLGetCipherName() (function) .. 270

SSLGetCipherStrength() (function) .. 271

SSLUseCache (property) .. 272

SSLVersion (property).. 274

StopClient () (function) .. 275

StopGenerator () (function) ... 276

string (property) .. 277

SynchronizationPoint() (function) .. 277

tagName (property) .. 279

target (property) .. 280

Text (function) ... 281

ThreadNum() (property) ... 282

TimeoutSeverity (property) ... 283

title (property) ... 284

Title (function) ... 285

TransactionTime (property) .. 287

type (property) .. 288

Url (property) .. 289

UserAgent (property) ... 291

UserName (property) ... 291

UseSameProxyForSSL (property) ... 292

UsingTimer (property) ... 293

value (property) .. 294

VCUniqueID() (function) ... 296

VerificationFunction() (user-defined) (function).. 297

Version (property) .. 299

WarningMessage() (function) ... 299

window (object) .. 300

wlClear() (method) ... 301

wlCookie (object) .. 302

wlDataFileField (method).. 304

wlDataFileParam() (parameterization) .. 304

wlException (object) ... 306

wlException() (constructor) ... 308

wlGeneratorGlobal (object) ... 309

wlGet() (method) .. 310

 xii  Table of Contents

wlGetAllForms() (method) .. 311

wlGetAllFrames() (method) .. 312

wlGetAllLinks() (method) ... 312

wlGlobals (object) ... 313

wlHeaders (object) .. 314

wlHtml (object) ... 315

wlHttp (object) .. 316

wlInputFile (object) .. 317

wlInputFile() (constructor) .. 318

wlLocals (object) ... 319

wlMetas (object) .. 320

wlNumberParam() (parameterization) .. 321

wlOutputFile (object) ... 323

wlOutputFile() (constructor) ... 324

wlRand (object) ... 326

wlSearchPairs (object) .. 327

wlSet() (method) ... 328

wlSource (property) ... 330

wlStatusLine (property) ... 331

wlStatusNumber (property) .. 331

wlStringParam() (parameterization) .. 331

wlSystemGlobal (object) .. 332

wlTables (object) ... 333

wlTarget (property) .. 334

wlTimeParam() (parameterization) ... 335

wlVerification (object) .. 337

wlVersion (property) .. 338

WLXmlDocument() (constructor) .. 339

wlXmls (object) .. 340

Write() (method) ... 343

Writeln() (method) .. 344

XMLDocument (property) .. 345

XMLParserObject (object) .. 346

Chapter 5. WebLOAD Internet Protocols Reference .. 347

wlFTP Object ... 347

JavaScript Reference Guide  xiii 

wlFTP Properties ... 348

wlFTP Methods .. 350

FTP Sample Code ... 356

wlFTPs Object .. 359

wlFTPs Properties .. 359

wlFTPs Methods .. 362

wlHtmMailer Object ... 368

wlHtmMailer Properties ... 369

wlHtmMailer Methods ... 371

wlIMAP Object .. 374

wlIMAP Properties .. 374

wlIMAP Methods .. 376

IMAP Sample Code ... 382

wlNNTP Object ... 385

wlNNTP Properties ... 386

wlNNTP Methods.. 389

NNTP Sample Code .. 393

wlPOP Object .. 395

wlPOP Properties ... 395

wlPOP Methods ... 398

POP Sample Code .. 400

wlPOPs Object ... 402

wlPOPs Properties ... 403

wlPOPs Methods ... 405

wlSMTP Object .. 407

wlSMTP Properties .. 408

wlSMTP Methods .. 410

SMTP Sample Code ... 413

wlSMTPs Object .. 414

wlSMTPs Properties .. 414

wlSMTPs Methods ... 417

wlTCP Object ... 419

wlTCP Properties ... 419

wlTCP Methods ... 422

TCP Sample Code .. 423

wlTelnet Object ... 424

wlTelnet Properties ... 425

wlTelnet Methods .. 426

Telnet Sample Code ... 428

wlUDP Object .. 430

wlUDP Properties .. 430

wlUDP Methods .. 433

UDP Sample Code ... 434

 xiv  Table of Contents

Chapter 6. XML Parser Object ... 437

Methods ... 438

Properties ... 442

Example .. 443

Chapter 7. WebSocket Object .. 445

Constructor .. 445

Methods ... 446

connect() (method) ... 446

close() (method) ... 446

send() (method) .. 446

Events ... 447

onmessage (evt) .. 447

onerror (evt) .. 447

onopen (evt) .. 447

WebSocket Sample Code ... 448

Appendix A. WebLOAD-supported SSL Protocol Versions 449

SSL Handshake Combinations ... 449

SSL Ciphers – Complete List ... 450

Appendix B. WebLOAD-supported XML DOM Interfaces 457

XML Document Interface Properties ... 457

XML Document Interface Methods .. 458

Node Interface Properties .. 459

Node Interface Methods .. 461

Node List Interface ... 462

NamedNodeMap Interface ... 463

ParseError Interface .. 464

Implementation Interface .. 464

Appendix C. HTTP Protocol Status Messages .. 465

Informational 1XX .. 465

Success 2XX ... 466

Redirection 3XX .. 469

Client Error 4XX .. 473

JavaScript Reference Guide  xv 

Server Error 5XX ... 477

Appendix D. WebLOAD–supported Character Sets .. 479

Appendix E. Glossary .. 483

Glossary Terms ... 483

Index ... 497

JavaScript Reference Guide  1 

Chapter 1

Introduction

Welcome to WebLOAD, the premier performance, scalability, and reliability testing

solution for internet applications.

WebLOAD is easy to use and delivers maximum testing performance and value.

WebLOAD verifies the scalability and integrity of internet applications by generating a

load composed of Virtual Clients that simulate real-world traffic. Probing Clients let

you refine the testing process by acting as a single user that measures the performance

of targeted activities, and provides individual performance statistics of the internet

application under load.

This section provides a brief introduction to WebLOAD technical support, including

both documentation and online support.

IMPORTANT NOTE: In previous WebLOAD versions, a WebLOAD script was called

an “Agenda”. From version 12.0, it is referred to simply as a script. Wherever

“Agenda” is still displayed, we are referring to the WebLOAD script.

WebLOAD Recorder was formerly referred to as WebLOAD IDE.

WebLOAD Documentation

WebLOAD is supplied with the following documentation:

WebLOAD™ Installation Guide

Instructions for installing WebLOAD and its add-ons.

WebLOAD™ Recorder User Guide

Instructions for recording, editing, and debugging load test

s to be executed by WebLOAD to test your Web-based applications.

 2  Chapter 1. Introduction

WebLOAD™ Console User Guide

A guide to using WebLOAD console, RadView’s load/scalability testing tool to

easily and efficiently test your Web-based applications. This guide also includes a

quick start section containing instructions for getting started quickly with

WebLOAD using the RadView Software test site.

WebLOAD™ Analytics User Guide

Instructions on how to use WebLOAD Analytics to analyze data and create

custom, informative reports after running a WebLOAD test session.

WebRM™ User Guide

Instructions for managing testing resources with the WebLOAD Resource

Manager.

WebLOAD™ Scripting Guide

Complete information on scripting and editing JavaScript scripts for use in

WebLOAD and WebLOAD Recorder.

WebLOAD™ JavaScript Reference Guide

Complete reference information on all JavaScript objects, variables, and functions

used in WebLOAD and WebLOAD Recorder test scripts.

WebLOAD™ Extensibility SDK

Instructions on how to develop extensions to tailor WebLOAD to specific working

environments.

WebLOAD™ Automation Guide

Instructions for automatically running WebLOAD tests and reports from the

command line, or by using the WebLOAD plugin for Jenkins.

WebLOAD™ Web Dashboard User Guide

Instructions for using RadView’s Web Dashboard to view, analyze and compare

load sessions in a web browser, with full control and customization of the display.

WebLOAD™ Cloud User Guide

Instructions for using RadView’s WebLOAD Cloud to view, analyze and compare

load sessions in a web browser, with full control and customization of the display.

The guides are distributed with the WebLOAD software in online help format. The

guides are also supplied as Adobe Acrobat files. View and print these files using the

Adobe Acrobat Reader. Install the Reader from the Adobe website

http://www.adobe.com.

http://www.adobe.com/

JavaScript Reference Guide  3 

Typographical Conventions

Before you start using this guide, it is important to understand the terms and

typographical conventions used in the documentation.

For more information on specialized terms used in the documentation, see Glossary (on

page 483).

The following icons appear next to the text to identify special information.

Table 1: Icon Conventions

Icon Type of Information

Indicates a note.

Indicates a feature that is available

only as part of a WebLOAD Add-on.

The following kinds of formatting in the text identify special information.

Table 2: Typographical Conventions

Formatting
convention

Type of Information

Special Bold Items you must select, such as menu options, command buttons,

or items in a list.

Emphasis Use to emphasize the importance of a point or for variable

expressions such as parameters.

CAPITALS Names of keys on the keyboard. for example, SHIFT, CTRL, or

ALT.

KEY+KEY Key combinations for which the user must press and hold down

one key and then press another, for example, CTRL+P, or ALT+F4.

Where to Get More Information

This section contains information on how to obtain technical support from RadView

worldwide, should you encounter any problems.

 4  Chapter 1. Introduction

Online Help

WebLOAD provides a comprehensive on-line help system with step-by-step

instructions for common tasks.

You can press the F1 key on any open dialog box for an explanation of the options or

select Help  Contents to open the on-line help contents and index.

Technical Support Website

The technical support pages on our website contain:

 The option of opening a ticket

 Links to WebLOAD documentation

Technical Support

For technical support in your use of this product, contact:

North American Headquarters International Headquarters

e-mail: support@RadView.com

Phone: 1-888-RadView

 (1-888-723-8439) (Toll Free)

 908-526-7756

Fax: 908-864-8099

e-mail: support@RadView.com

Phone: +972-3-915-7060

Fax: +972-3-915-7011

Note: We encourage you to use e-mail for faster and better service.

When contacting technical support please include in your message the full name of the

product, as well as the version and build number.

mailto:support@RadView.com
mailto:support@RadView.com

JavaScript Reference Guide  5 

Chapter 2

Introduction to JavaScript scripts

The WebLOAD JavaScript Reference Guide provides a detailed description of the syntax

and usage of the full set of WebLOAD JavaScript features, including the actions,

objects, and functions used to create sophisticated test session scripts.

Note: Most WebLOAD users do not need this level of detail to create effective testing

sessions for their website. Scripts are usually recorded and edited using WebLOAD

Recorder, a simple, intuitive interface that provides users with a comprehensive set of

testing tools literally at their fingertips, through point-and-click or drag-and-drop

convenience. The details in this guide are provided for the convenience of more

sophisticated programmers, who may wish to add specific, perhaps complex tailoring

to their recorded scripts.

This chapter provides a general introduction to JavaScript scripts.

What are scripts?

WebLOAD runs test sessions that simulate the actions of a real user through the use of

script files. Scripts are client programs that access the server you want to test. Users

create scripts by recording a series of typical activities with the application being tested

using WebLOAD Recorder WebLOAD Recorder automatically converts the user

activities into script programs. You do not need to know anything about writing scripts

to test an application with WebLOAD. No programming or editing skills are required

to create or run a successful test session.

Scripts are created using WebLOAD Recorder. WebLOAD Recorder operates in

conjunction with a Web browser such as Microsoft’s Internet Explorer. As a user

navigates the test application in the browser, (for example, navigating between pages,

typing text into a form, or clicking the mouse), WebLOAD Recorder records all user

actions in a script. During later website testing sessions, WebLOAD simulates every

action of the original user and automatically handles all Web interactions, including

parsing dynamic HTML, and full support for all security requirements, such as user

authentication or SSL protocol use.

A simple recorded script is ideal if your WebLOAD test involves a typical sequence of

Web activities. These activities are all recorded in your script, and are represented in

 6  Chapter 2. Introduction to JavaScript scripts

the WebLOAD Recorder by a Script Tree, a set of clear, intuitive icons and visual

devices arranged into a logical hierarchical sequence. Each of these activity icons

actually represents a block of code within the underlying test script. Scripts are

constructed automatically out of ‘building blocks’ of test code, and most users create

and run test sessions quite easily, without ever looking into those building blocks to

see the actual code inside.

Some users prefer to manually edit the code of a recorded script to create more

complex, sophisticated test sessions. For example, for a script to work with Java or

COM components, a certain degree of programming is required. This guide documents

the syntax of the JavaScript objects and functions available to programmers who wish

to add more complex functionality to their scripts.

Scripts are written in JavaScript. JavaScript is an object-oriented scripting language

developed by Netscape Communications Corporation. JavaScript is best known for its

use in conjunction with HTML to automate World Wide Web pages. However,

JavaScript is actually a full-featured programming language that can be used for many

purposes besides Web automation. WebLOAD has chosen JavaScript as the scripting

language for test session scripts. WebLOAD JavaScript scripts combine the ease and

simplicity of WebLOAD’s visual, intuitive programming environment with the

flexibility and power of JavaScript object-oriented programming.

For detailed information on using WebLOAD, including creating scripts, running test

sessions, and analyzing the results, see the WebLOAD Recorder User’s Guide and the

WebLOAD Console User’s Guide.

WebLOAD scripts Work with an Extended Version of

the Standard DOM

WebLOAD Recorder operates in conjunction with a Web browser such as Microsoft’s

Internet Explorer. As you execute a sequence of HTTP actions in the browser,

WebLOAD Recorder records your actions in a JavaScript script. All Web browsers rely

on an extended Document Object Model, or DOM, for optimum handling of HTML

pages. The standard browser DOM defines both the logical structure of HTML

documents and the way a document is accessed and manipulated. WebLOAD scripts

use a standard browser DOM to access and navigate Internet Web pages, including

Dynamic HTML and nested links and pages. To facilitate website testing, WebLOAD

extends the standard browser DOM with many features, objects, and functions that

expedite site testing and evaluation.

This section provides a brief overview of the standard DOM structure. Most of the

information in this overview was provided by the World Wide Web Consortium

(W3C), which develops interoperable technologies (specifications, guidelines, software,

and tools) to lead the Web to its full potential as a forum for information, commerce,

JavaScript Reference Guide  7 

communication, and collective understanding. For more information about the

standard DOM structure and components, go to the following websites:

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html

http://msdn2.microsoft.com/en-us/library/ms533043.aspx

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/

dhtmlrefs.asp

What is the Document Object Model?

The Document Object Model (DOM) is an application programming interface (API) for

valid HTML and well-formed XML documents. The DOM defines the logical structure

of documents and the way a document is accessed and manipulated. With the

Document Object Model, programmers can build documents, navigate their structure,

and add, modify, or delete elements and content. Anything found in an HTML or XML

document can be accessed, changed, deleted, or added using the Document Object

Model, with a few exceptions—in particular, the DOM interfaces for the XML internal

and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to

provide a standard programming interface that can be used in a wide variety of

environments and applications. The DOM is designed to be used with any

programming language.

Essentially, the DOM is a programming API for documents based on an object

structure that closely resembles the structure of the documents it models. For instance,

consider this table, taken from an HTML document:

<TABLE>

<TBODY>

<TR>

<TD>Shady Grove</TD>

<TD>Aeolian</TD>

</TR>

<TR>

<TD>Over the River, Charlie</TD>

<TD>Dorian</TD>

</TR>

</TBODY>

</TABLE>

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html
http://msdn2.microsoft.com/en-us/library/ms533043.aspx
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/dhtmlrefs.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/dhtmlrefs.asp

 8  Chapter 2. Introduction to JavaScript scripts

Understanding the DOM Structure

In the DOM, documents have a logical structure that is very much like a tree; to be

more precise, that is like a “forest” or “grove”, which can contain more than one tree.

Each document contains zero or one doctype nodes, one root element node, and zero

or more comments or processing instructions; the root element serves as the root of the

element tree for the document. However, the DOM does not specify that documents

must be implemented as a tree or a grove, nor does it specify how the relationships

among objects be implemented. The DOM is a logical model that may be implemented

in any convenient manner. In this specification, we use the term structure model to

describe the tree-like representation of a document. We also use the term “tree” when

referring to the arrangement of those information items which can be reached by using

“tree-walking” methods; (this does not include attributes). One important property of

DOM structure models is structural isomorphism: if any two Document Object Model

implementations are used to create a representation of the same document, they will

create the same structure model, in accordance with the XML Information Set [Infoset].

Note: There may be some variations depending on the parser being used to build the

DOM. For instance, the DOM may not contain white spaces in element content if the

parser discards them.

The name “Document Object Model” was chosen because it is an “object model” in the

traditional object oriented design sense. Documents are modeled using objects, and the

model encompasses not only the structure of a document, but also the behavior of a

document and the objects of which it is composed. In other words, the nodes in the

above diagram do not represent a data structure; they represent objects, which have

functions and identity. As an object model, the DOM identifies:

 The interfaces and objects used to represent and manipulate a document.

 The semantics of these interfaces and objects - including both behavior and

attributes.

 The relationships and collaborations among these interfaces and objects.

The structure of SGML documents has traditionally been represented by an abstract

data model, not by an object model. In an abstract data model, the model is centered

around the data. In object oriented programming languages, the data itself is

encapsulated in objects that hide the data, protecting it from direct external

manipulation. The functions associated with these objects determine how the objects

may be manipulated, and they are part of the object model.

The information in this section has been excerpted from the World Wide Web

Consortium introduction to the DOM. For the complete text of the DOM overview, see

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html. The

complete document is found at http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-

20010913/.

JavaScript Reference Guide  9 

Copyright © 1994-2001 World Wide Web Consortium (http://www.w3.org/),

(Massachusetts Institute of Technology (http://www.lcs.mit.edu/), Institut National de

Recherche en Informatique et en Automatique (http://www.inria.fr/), Keio University

(http://www.keio.ac.jp/)).

All Rights Reserved. http://www.w3.org/Consortium/Legal/

W3C® DOCUMENT NOTICE AND LICENSE

Copyright © 1994-2001 World Wide Web Consortium (http://www.w3.org/),

(Massachusetts Institute of Technology (http://www.lcs.mit.edu/), Institut National de

Recherche en Informatique et en Automatique (http://www.inria.fr/), Keio University

(http://www.keio.ac.jp/)).

All Rights Reserved. http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the

following license. The software or Document Type Definitions (DTDs) associated with

W3C specifications are governed by the Software Notice. By using and/or copying this

document, or the W3C document from which this statement is linked, you (the

licensee) agree that you have read, understood, and will comply with the following

terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C

document from which this statement is linked, in any medium for any purpose and

without fee or royalty is hereby granted, provided that you include the following on

ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.

2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a

notice of the form: “Copyright © [$date-of-document] World Wide Web

Consortium (http://www.w3.org/), (Massachusetts Institute of Technology

(http://www.lcs.mit.edu/), Institut National de Recherche en Informatique et en

Automatique (http://www.inria.fr/), Keio University (http://www.keio.ac.jp/)). All

Rights Reserved. http://www.w3.org/Consortium/Legal/ (Hypertext is preferred,

but a textual representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We

request that authorship attribution be provided in any software, documents, or other

items or products that you create pursuant to the implementation of the contents of

this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant

to this license. However, if additional requirements (documented in the Copyright

FAQ) are satisfied, the right to create modifications or derivatives is sometimes granted

by the W3C to individuals complying with those requirements.

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

 10  Chapter 2. Introduction to JavaScript scripts

THIS DOCUMENT IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO

REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE

CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT

THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY

THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,

SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE

CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or

publicity pertaining to this document or its contents without specific, written prior

permission. Title to copyright in this document will at all times remain with copyright

holders.

--

This formulation of W3C’s notice and license became active on April 05 1999 so as to

account for the treatment of DTDs, schemas and bindings. See the older formulation

for the policy prior to this date. Please see our Copyright FAQ for common questions

about using materials from our site, including specific terms and conditions for

packages like libwww, Amaya, and Jigsaw. Other questions about this notice can be

directed to site-policy@w3.org (mailto:site-policy@w3.org).

(Last updated by reagle on 1999/04/99.)

DOM Objects Commonly Used in a script

On Internet websites, a simple HTML document may be constructed of a single page,

or the document may be constructed of many nested pages, each one including

multiple ‘child’ windows, in a recursive structure. Browser DOMs were designed to

reflect this flexible approach.

When using the DOM, a single Web page document has a logical structure that

resembles a single tree. In nested Web pages, each child window is simply one tree in a

recursive forest of trees. The typical DOM is ideal for representing Internet Web page

access because it provides a flexible, generic model that encompasses both the

attributes of the object itself and its interfaces and behaviors. Typical DOM objects

include:

 The document itself.

 The frames nested in an HTML page, together with any additional nested

windows.

mailto:site-policy@w3.org

JavaScript Reference Guide  11 

 The location information.

 The links, forms, and images on the page.

 The tables, scripts, XML Data Islands, and Meta objects on the page.

 Individual elements of a specific form or frame.

The following table provides a brief overview of the main DOM object components of a

typical Web page.

DOM objects commonly used in scripts

The following table lists the DOM objects commonly used in scripts. A detailed

description of each of these objects can be found in the following sections.

Table 3: DOM Objects Commonly Used in scripts

Object Description

window The window object represents an open browser window.

Typically, the browser creates a single window object when it

opens an HTML document. However, if a document defines one or

more frames the browser creates one window object for the

original document and one additional window object (a child

window) for each frame. The child window may be affected by

actions that occur in the parent. For example, closing the parent

window causes all child windows to close.

document The document object represents the HTML document in a

browser window, storing the HTML data in a parsed format. Use

the document object to retrieve links, forms, nested frames,

images, scripts, and other information about the document. By

default, document used alone represents the document in the

current window. You usually refer directly to the document; the

window part is optional and is understood implicitly.

frame Each frame object represents one of the frames imbedded within

a Web page. Frames and windows are essentially comparable. The

recursive aspect of the DOM is implemented at this level. A

window may contain a collection of frames. Each frame may

contain multiple child windows, each of which may contain more

frames that contain more windows, and so on.

location The location object contains information on the current window

URL.

link A link object contains information on an external document to

which the current document is linked.

 12  Chapter 2. Introduction to JavaScript scripts

Object Description

form, element, and

input

A form object contains the set of elements and input controls (text,

radio buttons, checkboxes, etc.) that are all components of a single

form. Each element object stores the parsed data for a single HTML

form element such as <INPUT>, <BUTTON>, or <SELECT>. Each

input object stores the information defining one of the input

controls in the form. Controls are organized by type, for example

input type=checkbox.

Forms enable client-side users to submit data to a server in a

standardized format. A form is designed to collect the required

data using a variety of controls, such as INPUT or SELECT. Users

viewing the form fill in the data and then click the SUBMIT button

to send it to the server. A script on the server then processes the

data. Notice that the object syntax corresponds to a path through

the DOM hierarchy tree, beginning at the root window and

continuing until the specified item’s properties.

image Each image object contains one of the embedded images found in

a document.

script A script object defines a script for the current document that

will be interpreted by a script engine.

title The title object contains the document title, stored as a text

string.

WebLOAD Extension Set

WebLOAD has added the following extensions to the standard DOM properties and

methods. This guide provides syntax specifications for these objects.

WebLOAD DOM extension set highlights

Table 4: WebLOAD DOM Extension Set Highlights

WebLOAD object
extensions

Description

wlCookie Sets and deletes cookies.

wlException WebLOAD error management object.

wlGeneratorGlobal and

wlSystemGlobal objects

Handles global values shared between script threads or Load

Generators.

wlGlobals Manages global system and configuration values.

wlHeaders Contains the key/value pairs in the HTTP command headers

that brought the document. (Get, Post, etc.)

wlHttp Performs HTTP transactions and stores configuration property

values for individual transactions.

JavaScript Reference Guide  13 

wlLocals Stores local configuration property values.

wlMetas Stores the parsed data for an HTML meta object.

wlOutputFile Writes script output messages to a global output file.

wlRand Generates random numbers.

wlSearchPairs Contains the key/value pairs in a document’s URL search

strings.

wlTables, row, and cell

objects

Contains the parsed data from an HTML table.

XML DOM objects XML DOM object set that generates new XML data to send

back to the server for processing.

Website testing usually means testing how typical user activities are handled by the

application being tested. Are the user actions managed quickly, correctly,

appropriately? Is the application responsive to the user’s requests? Will the typical user

be happy working with this application? When verifying that an application handles

user activities correctly, WebLOAD usually focuses on the user activities, recording

user actions through the WebLOAD Recorder when initially creating scripts and

recreating those actions during subsequent test sessions. The focus on user activities

represents a high-level, conceptual approach to test session design.

Sometimes a tester may prefer to use a low-level, “nuts-and-bolts” approach that

focuses on specific internal implementation commands, such as HTTP transactions.

The WebLOAD DOM extension set includes objects, methods, properties, and

functions that support this approach. Items in this guide that are relevant to the HTTP

Transaction Mode are noted as such in the entries.

When Would I Edit the JavaScript in My scripts?

WebLOAD Recorder automatically creates JavaScript scripts for test sessions based on

the actions performed by the user during recording. You don’t have to be familiar with

the JavaScript language to work with WebLOAD and test Web applications. However,

as your testing needs increase, you may want to edit and expand the set of scripts that

were already recorded. Many users prefer to design test sessions around a set of basic

scripts created through WebLOAD Recorder and then expand or tailor those scripts to

meet a particular testing need. Some of the reasons for editing JavaScript scripts

include:

 Recycling and updating a useful library of test scripts from earlier versions of

WebLOAD.

 Creating advanced, specialized verification functions.

 Debugging the application being tested.

 14  Chapter 2. Introduction to JavaScript scripts

 Optimization capabilities, to maximize your application’s functionality at minimal

cost.

This guide documents the syntax and usage of the actions, functions, objects, and

variables provided by WebLOAD to add advanced functionality and tailoring to the

JavaScript scripts created through WebLOAD Recorder. JavaScript is very similar to

other object-oriented programming languages such as C++, Java, and Visual Basic. The

syntax of JavaScript is also very similar to C. If you know any of these other languages,

you will find JavaScript very easy to learn. You can probably learn enough about

JavaScript to start programming just by studying the examples in this book.

Note: For detailed information about the JavaScript language, please refer to the

section entitled The Core JavaScript Language in the Netscape JavaScript Guide, which is

supplied in Adobe Acrobat format with the WebLOAD software. You may also learn

the elements of JavaScript programming from many books on Web publishing. Keep in

mind that some specific JavaScript objects relating to Web publishing do not exist in

the WebLOAD test environment.

Accessing script Components

WebLOAD uses test session scripts to simulate user activities at a website. A script is

initially created by WebLOAD Recorder during a recording session. As a user works

with a test application in a browser, (for example, navigating between pages, typing

text into a form, or clicking the mouse), WebLOAD Recorder stores information about

all user actions in a script. Scripts are also edited using WebLOAD Recorder. Users

may add functionality or customize their scripts through the objects, functions, and

other features described in this guide.

Customizing scripts may involve nothing more than dragging an icon from the

WebLOAD Recorder toolbar and dropping it into a graphic representation of the

script. It may involve entering or changing data through a user-friendly dialog box, or

with the help of a Wizard. Some users may even add special features to their scripts by

editing the underlying code of the script itself. When working with scripts, users may

be working on many different levels. For that reason, the WebLOAD Recorder desktop

includes multiple view options, providing information on multiple levels. See the

WebLOAD Scripting Guide for a more extensive, illustrated explanation of the

WebLOAD Recorder desktop components.

 Most users access scripts primarily through a Script Tree, a set of clear, intuitive

icons and visual devices representing user activities during a recording session,

arranged into a logical structure. Each user activity in the Script Tree is referred to

as a node. Nodes are organized in a hierarchical arrangement. The outmost level,

or root level, is a single script node. The second level directly under the root script

node includes all the Web pages to which the user navigated over the course of the

recording session. The third level, organized under each Web page, includes all the

JavaScript Reference Guide  15 

user activities that occurred on the parent Web page. These activities are

themselves organized into additional levels. For example, all data input on a single

form in a Web page is organized into a single sub-tree of user input nodes collected

under the node for that form. The Script Tree appears on the left side of the

WebLOAD Recorder desktop.

 Web page nodes are added to the Script Tree in one of two ways. Some Web pages

are the result of a user action on the previous page, such as clicking a link and

jumping to a new page. Other Web pages are created as a result of direct or

indirect navigation, such as entering a URL in the browser window, or pop-up

windows triggered by a previous navigation. The sets of user activities contained

between two direct-navigation Web pages in a Script Tree parallel the navigation

blocks found within the JavaScript script code.

During a WebLOAD Recorder recording session, a new navigation block is created

each time a user completes a direct navigation, manually entering a new URL into

the WebLOAD Recorder address bar. Each navigation block is surrounded by a

try{} catch{} statement in the corresponding JavaScript script code.

Navigation blocks are useful for error management, especially when running

“hands-free” test sessions. For example, the user can define the default testing

behavior to be that if an error is encountered during a test session, WebLOAD

should throw the error, skip to the next navigation block, and continue with the

test session. Errors during playback are indicated by a red X appearing beside the

problematic action in the Script Tree.

 The graphic nodes in a Script Tree actually represent blocks of code within the

underlying recorded script. The JavaScript code corresponding to a selected node

is automatically displayed in the JavaScript View pane. The JavaScript View pane is

one of the tabs available in the WebLOAD Recorder desktop.

 The graphic nodes in a Script Tree represent user actions on a website. An exact

replica, or snapshot, of each user activity is stored during recording and available

in the Browser View to aid in debugging and help users remember what each

action accomplished. The Browser View pane is one of the tabs available in the

WebLOAD Recorder desktop.

 Web pages are created through HTML programs. The HTML code that underlies

each stored Web page is also stored during recording sessions. For easy reference,

the HTML code of the Web page associated with a selected node is displayed in the

HTML View pane. The HTML View pane is one of the tabs available in the

WebLOAD Recorder desktop.

 Web pages have a logical structure that may be represented through a series of

DOM object trees. The DOM tree for a selected Web page is essentially a

hierarchically structured, more easily understood representation of the DOM

objects found in the HTML code for that Web page. The DOM tree of the Web page

associated with a selected node is displayed in the DOM View pane. The DOM

View pane is one of the tabs available in the WebLOAD Recorder desktop. When

 16  Chapter 2. Introduction to JavaScript scripts

working with the DOM View, the center pane is actually split in half, with the

upper half displaying the DOM View and the lower half displaying the

corresponding Web page, seen in the Browser View.

The following figure illustrates a WebLOAD Recorder desktop displaying the Script

Tree and DOM and Browser Views. The Script Tree is on the left. The Browser View

pane on the lower right focuses on a piece of the selected form as it appeared on the

Web page at the time this script was recorded. The DOM View pane on the upper right

displays the DOM objects that represent the selected form, arranged in a tree that

corresponds to the user activity in the selected form.

Figure 1: Script Tree, DOM, and Browser Views

JavaScript Reference Guide  17 

Editing the JavaScript Code in a script

Accessing the JavaScript Code within the Script Tree

WebLOAD Recorder provides a complete graphic user interface for creating and

editing script files. Additions or changes to a script are usually made through the

WebLOAD Recorder, working with intuitive icons representing user actions in a

graphic Script Tree. For greater clarity, the JavaScript code that corresponds to each

user action in a script is also visible in the JavaScript View pane on the WebLOAD

Recorder desktop.

While most people never really work with the JavaScript code within their script, some

users do wish to manually edit the JavaScript code underlying their Script Tree. For

example, some test sessions may involve advanced WebLOAD testing features that

cannot be completely implemented though the GUI, such as Java or XML objects.

Editing the JavaScript code in a script does not necessarily mean editing a huge

JavaScript file. Most of the time users only wish to add or edit a specific feature or a

small section of the code. WebLOAD Recorder provides access to the JavaScript code in

a script through JavaScript Object nodes, which are seen on the following levels:

 JavaScript Object nodes—individual nodes in the Script Tree. Empty JavaScript

Object nodes may be dragged from the WebLOAD Recorder toolbar and dropped

onto the Script Tree at any point selected by the user, as described in the WebLOAD

Scripting Guide. Use the IntelliSense Editor, described in Using the IntelliSense

JavaScript Editor (on page 18), to add lines of code or functions to the JavaScript

Object.

 Converted Web page—the sub-tree or branch of a Script Tree that represents all

user activity within a single Web page, converted to a single JavaScript Object

node. A Web page branch is ‘rooted’ in the Script Tree with an icon that represents

the user’s navigation to that page’s URL. The icons on that branch represent all

user activities from the point at which that Web page was first accessed until the

point at which the user navigated to a different Web page. Some testing features

may require manually editing or rewriting the JavaScript code for user activities

within a Web page. To manually edit code in a recorded script, the Web page

branch that includes that code must be converted to a JavaScript Object.

Converting a Web page branch to a JavaScript Object is simple. Right click the

preferred Web page node in the Script Tree and select Convert to JavaScript Object

from the pop-up menu. The entire Web page branch becomes a single JavaScript

Object, which can then be edited through the IntelliSense Editor.

Note: Once a branch has been converted to a single JavaScript Object, the various user

activity icons that were on that branch are no longer individually accessible.

 Imported JavaScript File—an external JavaScript file that should be incorporated

within the body of the current script. Select Edit  Import JavaScript File from the

 18  Chapter 2. Introduction to JavaScript scripts

WebLOAD Recorder menu to import the file of your choice. Often testers work

with a library of pre-existing library files from which they may choose functions

that are relevant to the current test session. This modular approach to

programming simplifies and speeds up the testing process, and is fully supported

and endorsed by WebLOAD.

 Converted Script Tree—if necessary, an entire Script Tree can be converted to a

single JavaScript Object node consisting of a straight JavaScript text file. Right click

the Script Tree’s root node and choose Convert to JavaScript Object from the pop-

up menu. However, this conversion is not recommended unless manual editing of

an entire script file is truly required for the test session.

Using the IntelliSense JavaScript Editor

For those users who wish to manually edit their scripts, WebLOAD Recorder provides

three levels of programming assistance:

 An IntelliSense Editor mode for the JavaScript View pane.

Add new lines of code to your script or edit existing JavaScript functions through

the IntelliSense Editor mode of the JavaScript View pane. The IntelliSense Editor

helps you write the JavaScript code for a new function by formatting new code and

prompting with suggestions and descriptions of appropriate code choices and

syntax as programs are being written. IntelliSense supports the following shortcut

keys:

 Period (“.”) – Enter a period after the object name, to display a drop-down list

of the object’s available properties that can be added to the script (see

Figure 2).

 <CTRL> <Space> – While typing the name of an object, you can type <CTRL>

<Space> to display a drop-down list of the available objects that begin with the

letters that you entered. For example, if you type wl the IntelliSense Editor

displays a drop-down list of all of the objects that begin with wl (such as

wlhttp).

In addition, the IntelliSense Editor gives a structure to the code with the outline bar

and line numbering.

Collapsing the code enables you to view the heading of the section, without seeing

the code within the section. To expand or collapse different sections of the code:

 Click the plus sign (+) or minus sign (-) on the outline bar,

-Or-

 Right-click within the IntelliSense Editor and select Outlining from the pop-up

menu. The available outlining options are:

JavaScript Reference Guide  19 

 Toggle outline – Collapses or expands the section at the mouse location.

 Toggle all outline – Collapses or expands all outlines.

 Collapse to definition – Collapses all outlines.

You can enable or disable both the outline bar and line numbering features by:

 Selecting Edit  Enable Outlining or Line Numbers,

-Or-

 Right-clicking within the IntelliSense Editor and selecting Enable Outlining or

Line Numbers from the pop-up menu.

When these features are enabled, a checkmark appears next to the name in the Edit

and pop-up menus. By default, these features are enabled, but WebLOAD opens

with the settings that were saved during the previous WebLOAD session. During

playback and debug modes, all outlines are expanded.

Use WebLOAD Recorder’s predefined delimiters to keep your code structured and

organized. The available delimiters include:

 For JavaScript functions, use the “{“ as the start delimiter and the “}” end

delimiter.

 For script tree nodes, insert a WLIDE comment from the General WebLOAD

Recorder toolbox. This automatically inserts a start delimiter “//” and end

delimiter “End WLIDE”.

For more information, see the WebLOAD Scripting Guide.

Figure 2: IntelliSense Editor Mode for JavaScript View Pane

 A selection of the most commonly used functions and commands, available

through the Insert menu.

 20  Chapter 2. Introduction to JavaScript scripts

You can choose to program your own JavaScript Object code within your script

and take advantage of the WebLOAD Recorder to simplify your programming

efforts. Rather than manually typing out the code for each command, with the risk

of making a mistake, even a trivial typographical error, and adding invalid code to

the script file, you may select an item from the Insert menu, illustrated in the

following figure, to bring up a list of available commands and functions for the

selected item. WebLOAD Recorder automatically inserts the correct code for the

selected item into the JavaScript Object currently being edited. You may then

change specific parameter values without any worries about accidental mistakes in

the function syntax.

Figure 3: Insert Menu

In addition to the Insert menu, you may select an item from the Insert Variable

menu, to add system and user-defined parameters to the script. This eliminates the

need for manual coding.

JavaScript Reference Guide  21 

Figure 4: Insert Variable Menu

 A Syntax Checker that checks the syntax of the code in your script file and catches

simple syntax errors before you spend any time running a test session. While

standing in the JavaScript View pane of the WebLOAD Recorder desktop, select

Tools  Check Syntax to check the syntax of the code in your script file.

Important: WebLOAD Recorder scripts should be edited only within the confines of

WebLOAD Recorder, not an external editor. If you use an external editor to modify the

JavaScript code in a script file generated by WebLOAD Recorder, your visual script

will be lost.

Script code that you wish to write or edit must be part of a JavaScript Object in the

Script Tree. Adding or converting JavaScript Objects in a Script Tree is described in

Accessing the JavaScript Code within the Script Tree (on page 17).

JavaScript Reference Guide  23 

Chapter 3

Using the WebLOAD JavaScript
Reference

The WebLOAD JavaScript programming tools provide a powerful means of adding

sophisticated, complex tailoring to recorded scripts. WebLOAD supports literally

hundreds of functions, objects, properties, and methods, to provide optimal

programming power for your test session script.

To simplify access to the WebLOAD JavaScript toolset, this section organizes the

functions and objects into major categories, providing you with information to help

you locate a specific tool or capability.

Note: These categories do not constitute an exhaustive list of all WebLOAD JavaScript

objects, properties, methods, and functions. This is simply a list of the major categories,

to help you quickly identify the most commonly used items.

The WebLOAD JavaScript toolset includes many additional elements. For a complete,

alphabetical reference list of all toolset components, see WebLOAD Actions, Objects, and

Functions (on page 37).

The WebLOAD JavaScript toolset can be organized into the following categories:

 Collections—Meta-objects that serve as arrays or sets of individual objects.

Described in Collections (on page 27).

 File Management—Functions used to manage access to a script’s external files.

Described in File Management Functions (on page 28).

 Identification Components—Functions and variables used to identify specific

elements or points of time during a test session, for clarity in understanding

session results and output reports. Described in Identification Variables and Functions

(on page 29).

 Message Functions—Functions used to display messages in the WebLOAD

Console Log Window. Described in Message Functions (on page 30).

 Objects—A brief introduction to the WebLOAD JavaScript object set. See Objects

(on page 32).

 24  Chapter 3. Using the WebLOAD JavaScript Reference

 SSL Cipher Command Suite—A set of functions and properties that implement

full SSL/TLS 1.0 protocol support. Described in SSL Cipher Command Suite (on

page 33).

 Timing Functions—Functions used to time or synchronize any operation or group

of user activities in a script. Described in Timing Functions (on page 34).

 Transaction Verification Components—Components used to create customized

transaction verification functions. Described in Transaction Verification Components

(on page 36).

 Parameterization—A brief introduction explanation and reference to all

parameterization objects and functions. Described in Parameterization (on page 35).

 Internet Protocol Support—Objects that implement full support of the complete

range of Internet protocols. Described in WebLOAD Internet Protocols Reference (on

page 347).

HTTP Components

Properties and Methods of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The wlGlobals, wlLocals, and wlHttp objects share a set of components that

manage user HTTP activities. This section lists these browser properties and methods.

Some of the components are common to all three objects. Some of the properties or

methods are used by only one object, and are marked so in the tables.

Note: The values assigned in a wlHttp object override any global defaults assigned in

wlGlobals or local defaults in wlLocals. WebLOAD uses the wlGlobals or

wlLocals defaults only if you do not assign values to the corresponding properties in

the wlHttp object.

Syntax

NewValue = wlGlobals.BrowserMethod()

wlGlobals.BrowserProperty = PropertyValue

Example

Each individual property and method includes examples of the syntax for that

property.

JavaScript Reference Guide  25 

Methods

 ClearDNSCache() (see ClearDNSCache() (method) on page 49)

 ClearSSLCache() (see ClearSSLCache() (method) on page 49)

The following methods are for wlHttp objects only:

 CloseConnection() (see CloseConnection() (method) on page 53)

 Get() (see Get() (transaction method) on page 104)

 Post() (see Post() (method) on page 205)

 Head() (see Head() (method) on page 139)

Data Methods

 wlClear() (see wlClear() (method) on page 301)

 wlGet() (see wlGet() (method) on page 310)

 wlSet() (see wlSet() (method) on page 328)

Figure 5: wlHttp Array

Properties

The following properties are for wlHttp objects only

Data Properties

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Header (see Header (property) on page 140)

 26  Chapter 3. Using the WebLOAD JavaScript Reference

 DataCollection.type (see type (property) on page 288)

 DataCollection.value (see value (property) on page 294)

The following properties are used by wlHttp, wlLocals, and wlGlobals objects unless

otherwise noted.

Configuration Properties

 ConnectionSpeed (see ConnectionSpeed (property) on page 55) (wlGlobals only)

 DisableSleep (see DisableSleep (property) on page 76)

 DNSUseCache (see DNSUseCache (property) on page 77)

 KeepAlive (see KeepAlive (property) on page 159)

 LoadGeneratorThreads (see LoadGeneratorThreads (property) on page 165)

 MultiIPSupport (see MultiIPSupport (property) on page 171)

 NTUserName, NTPassWord (see NTUserName, NTPassWord (properties) on

page 176)

 Outfile (see Outfile (property) on page 188)

 PassWord (see PassWord (property) on page 203)

 ProbingClientThreads (see ProbingClientThreads (property) on page 208)

 Proxy, ProxyUserName, ProxyPassWord (see Proxy, ProxyUserName,

ProxyPassWord (properties) on page 210)

 RedirectionLimit (see RedirectionLimit (property) on page 216)

 SaveSource (see SaveSource (property) on page 226)

 SaveTransaction (see SaveTransaction (property) on page 226) (wlGlobals only)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 type (see type (property) on page 288)

 Url (see Url (property) on page 289)

 UserAgent (see UserAgent (property) on page 291)

 UserName (see UserName (property) on page 291)

 UsingTimer (see UsingTimer (property) on page 292)

JavaScript Reference Guide  27 

 Version (see Version (property) on page 299)

 wlTarget (see wlTarget (property) on page 334)

See also

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Collections

Description

Collections are arrays or sets of individual objects. For example, the elements

collection refers to a collection of individual element objects.

Access individual members of a collection either through an index number or directly

through the member’s name or ID. The following three syntax choices are equivalent:

Collection[index#]

Collection[“ID”]

Collection.ID

Test session scripts work with all browser DOM collections and objects. The

recommended way to access these objects is through the classic browser document

object, via the relevant collection. For example, access a table through:

document.links[0]

Properties

Each collection of objects includes the single property length, which contains the size of

the collection, that is, the number of objects included in this collection. You may also

use the index value to access individual objects from within a collection.

For example, to find out how many images objects are contained within the images

collection of a document, check the value of:

document.images.length

In this Guide, the description of each individual object includes information on the

collection, if any, to which that object belongs.

See also

 element (see element (object) on page 80)

 28  Chapter 3. Using the WebLOAD JavaScript Reference

File Management Functions

Description

These functions manage access to a script’s function and input files, including opening

and closing files, copying files, specifying include files, and reading lines from ASCII

input files.

Note: Input file management is also provided by wlInputFile (see wlInputFile (object) on

page 317). Output file management is also provided by wlOutputFile (see wlOutputFile

(object) on page 323).

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 GetLine() (wlOutputFile) (see GetLine() (function) on page 123)

 GetLine() (wlInputFile) (see GetLine() (method) on page 125)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (wlOutputFile) (see Open() (function) on page 183)

 Open() (wlInputFile) (see Open() (method) on page 180)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (see Using the IntelliSense JavaScript Editor

on page 18)

 wlOutputFile() (see wlOutputFile (object) on page 323)

 wlInputFile() (see wlInputFile (object) on page 317)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

JavaScript Reference Guide  29 

Identification Variables and Functions

Description

For performance statistics to be meaningful, testers must be able to identify the exact

point being measured. WebLOAD therefore provides the following identification

variables and functions:

 Two variables, ClientNum (see ClientNum (property) on page 50) and RoundNum,

(see RoundNum (variable) on page 222) identify the client and round number of the

current script instance.

 The GeneratorName() (see GeneratorName() (function) on page 101) function

identifies the current Load Generator.

 The GetOperatingSystem() (see GetOperatingSystem() (function) on page 131)

function identifies the operating system of the current Load Generator.

 The VCUniqueID() (see VCUniqueID() (function) on page 296) function identifies

the current Virtual Client instance.

Example

The following example illustrates common use of these variables and functions. Use

these variables and function to support the WebLOAD measurement features and

obtain meaningful performance statistics.

Suppose your script submits data to a server on an HTML form. You want to label one

of the form fields so you can tell which WebLOAD client submitted the data, and in

which round of the main script.

You can do this using a combination of the ClientNum and RoundNum variables.

Together, these variables uniquely identify the WebLOAD client and round. For

example, you can submit a string such as the following in a form field:

“C” + ClientNum.toString() + “R” + RoundNum.toString()

GUI mode

WebLOAD recommends accessing these identification variables and functions through

the WebLOAD Recorder. All the variables that appear in this list are available for use

at all times in a script file. In the WebLOAD Recorder main window, click Variable

Windows in the Debug tab of the ribbon..

For example, it is convenient to add ClientNum to a Message Node to clarify which

client sent the messages that appear in the WebLOAD Console Log window.

 30  Chapter 3. Using the WebLOAD JavaScript Reference

Figure 6: Variables List in WebLOAD Recorder

See also

 ClientNum (see ClientNum (property) on page 50)

 GeneratorName() (see GeneratorName() (function) on page 101)

 GetOperatingSystem() (see GetOperatingSystem() (function) on page 131)

 RoundNum (see RoundNum (variable) on page 222)

 VCUniqueID() (see VCUniqueID() (function) on page 296)

Message Functions

Description

These functions display messages in the Log Window of WebLOAD Recorder or

Console. Some of the functions raise errors and interrupt test session execution. For

information on using the Log Window and on message types, see the WebLOAD

Console User’s Guide.

Example

In the following example, the script attempts to download an HTML page. If it fails on

the first try, it pauses for 3 minutes and tries again. If it fails on the second try, it aborts

the current round.

function InitClient() {

wlLocals.Url = “http://www.ABCDEF.com/index.html”

}

//First try

wlHttp.Get()

if (document.wlStatusNumber != 200) {

InfoMessage(“Thread “ + ClientNum.toString() +

 “ pausing for 3 min”)

Sleep(180000)

//Second try

JavaScript Reference Guide  31 

wlHttp.Get()

if (document.wlStatusNumber != 200) {

ErrorMessage(“Aborting round “ + RoundNum.toString() +

“ of thread “ + ClientNum.toString())

} // End of second try

}

GUI mode

Note: Message functions are usually accessed and inserted into script files directly

through the WebLOAD Recorder. Message function commands can be added to the

script in Visual Editing mode using the Toolbox message item and the Insert menu

command. The JavaScript code line that corresponds to this message function appears

in the JavaScript View pane.

Message function command lines may also be added directly to the code in a

JavaScript Object within a script through the IntelliSense Editor, described in Using the

IntelliSense JavaScript Editor (on page 18).

Messages can also be added to the script using the Toolbox Message icon . Drag the

Message icon to the Script Tree. The Message dialog box appears. Type or select the

information to appear in the message. Use double quotes to include a string value, or

click to select a variable. Select the severity of the message from the Message

Severity drop-down list.

See also

 Error Management in the WebLOAD Scripting Guide

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

 wlException (see wlException (object) on page 306)

 wlException() (see wlException() (constructor) on page 308)

 32  Chapter 3. Using the WebLOAD JavaScript Reference

Objects

Description

WebLOAD scripts Work with an Extended Version of the Standard DOM on page 6 presents

an overview of the Document Object Model (DOM), describing some of the basic

objects used by standard Web browsers when working with HTML Web pages. The

classic browser DOM includes a wide range of objects, properties, and methods for

maximum utility and versatility. For more information about the standard DOM

structure and components, go to the following websites:

 http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html

 http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dom/domov

erview.asp

 http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/refere

nce/dhtmlrefs.asp

Since WebLOAD emulates the HTTP activities included in a test session, WebLOAD

supports the standard DOM object set that implements those activities. Only the DOM

objects, properties, and methods of special interest to WebLOAD programmers

working with test session scripts are listed here. This guide also includes reference

material for the objects, properties, and methods that were added by WebLOAD as

extensions to the basic DOM, to implement specific test session features.

Website testing usually means testing how typical user activities are handled by the

application being tested. Are the user actions managed quickly, correctly and

appropriately? Is the application responsive to the user’s requests? Will the typical user

be happy working with this application? When verifying that an application handles

user activities correctly, WebLOAD usually focuses on the user activities, recording

user actions through WebLOAD Recorder when initially creating scripts and recreating

those actions during subsequent test sessions. The focus on user activities represents a

high-level, conceptual approach to test session design.

Sometimes a tester may prefer to use a low-level, “nuts-and-bolts” approach that

focuses on specific internal implementation commands, such as HTTP transactions.

The WebLOAD DOM extension set includes objects, methods, properties, and

functions that support this approach. Items in the WebLOAD JavaScript Reference Guide

that are relevant to the HTTP Transaction Mode are noted as such in the entry.

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/introduction.html
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dom/domoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dom/domoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/dhtmlrefs.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/dhtmlrefs.asp

JavaScript Reference Guide  33 

SSL Cipher Command Suite

Description

WebLOAD provides full SSL/TLS 1.0/TLS 1.2 protocol support through a set of SSL

properties for the wlGlobals object combined with a set of functions called the

Cipher Command Suite. These SSL functions allow you to identify, enable, and disable

selected SSL protocols or security levels. For a complete list of the supported SSL

protocols, see SSL Ciphers – Complete List on page 450.

Functions

The Cipher Command Suite includes the following functions:

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLEnableStrength() (see SSLEnableStrength() (function) on page262)

Comment

Use the Cipher Command Suite to check or verify SSL configuration information at

any point in your script. However, any changes to a script’s SSL property configuration,

whether through the wlGlobals properties or the Cipher Command Suite functions,

must be made in the script’s initialization functions. Configuration changes made in the

InitAgenda() function will affect all client threads spawned during that script’s test

session. Configuration changes made in the InitClient() function will affect only

individual clients. Do not make changes to the SSL property configuration using

wlHttp or wlLocals properties or in a script’s main body. The results will be

undefined for all subsequent transactions.

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 34  Chapter 3. Using the WebLOAD JavaScript Reference

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLEnableStrength() (see SSLEnableStrength() (function) on page 262)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Timing Functions

Description

The timer functions let you time or synchronize any operation or group of user

activities in a script, such as a navigation or mouse click, and send the time statistics to

the WebLOAD Console.

Example

The following script connects to the home Web page of company. On every fifth round,

the script also connects to a second Web page. The script uses different timers to

measure the time for each connection.

Note: This script fragment contains a main script only.

WebLOAD reports three time statistics:

 The round time, which includes both connections.

 Page 1 Time, reported in every round for the first connection only.

JavaScript Reference Guide  35 

 Page 2 Time, reported in every fifth round for the second connection only.

SetTimer(“Page 1 Time”)

wlHttp.Get(“http://www.ABCDEF.com”)

SendTimer(“Page 1 Time”)

if (RoundNum%5 == 0) {

SetTimer(“Page 2 Time”)

wlHttp.Get(“http://www.ABCDEF.com/product_info.html”)

SendTimer(“Page 2 Time”)

}

Functions

The set of timer functions includes the following:

 SendCounter() (see SendCounter() (function) on page 237)

 SendMeasurement() (see SendMeasurement() (function) on page 238)

 SendTimer() (see SendTimer() (function) on page 239)

 SetTimer() (see SetTimer() (function) on page 244)

 Sleep() (see Sleep() (function) on page 248)

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

Parameterization

Parameterization enables you to edit a script containing static values and transform it

into a script that will run multiple variations of the static values.

When recording a script, WebLOAD captures the data that is being sent, including

login details, user selections, and entered text. When running the script under load,

simulating many users, it is desirable to use variations in the data, so as to simulate the

application more realistically. To do so, you can replace the static values with

parameters.

Parameter values can come from a file, or be automatically generated numbers, strings

and dates.

Using parameterization enables you to specify how the script should select values from

the data file. For example:

 Order considerations – Whether to randomly select values from the data file, or use

them in the order they appear.

 Uniqueness considerations – Whether the same value can be used at the same time

by different virtual clients.

 36  Chapter 3. Using the WebLOAD JavaScript Reference

You can also specify the update policy, which defines when a new value will be read

or calculated. For example, whether to update the value on each round, or once at the

beginning of the test.

In addition to defining a data file, you can also use parameterization to define a

random number format, date/time format, and string format. These can also be used to

replace static values. For example, if the online shop delivers books between 1-14 days

from the date of purchase, you can define a random number format of 1-14 and replace

the static desired delivery period value with a call to the random number format.

Functions

The set of parameterization functions includes the following:

 wlTimeParam() (see wlTimeParam() (parameterization) on page 335)

 wlDataFileParam() (see wlDataFileParam() (parameterization) on page 304)

 wlNumberParam() (see wlNumberParam() (parameterization) on page 321)

 wlStringParam() (see wlStringParam() (parameterization) on page 331)

Transaction Verification Components

Description

Customized transaction verification functions are created out of the following

components:

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

See also

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 TransactionTime (see TransactionTime (property) on page 287)

JavaScript Reference Guide  37 

Chapter 4

WebLOAD Actions, Objects, and
Functions

This chapter includes syntax specifications for the objects, properties, methods, and

functions most useful for users who wish to program the code within their JavaScript

scripts. To simplify and clarify the information presented, this chapter begins with a

brief introduction to the concept of the basic Document Object Model, or DOM, upon

which most website implementations are based. After this basic introduction, the rest

of the chapter consists of reference entries for each item, arranged in alphabetical

order.

AcceptEncodingGzip (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Sets the wlGlobals.AcceptEncodingGzip flag, which enables Gzip support. For each

request, WebLOAD sends the header “Accept-Encoding: gzip, deflate”. This tells the

server that the client can accept zipped content. As most servers will work correctly

even if the client does not send the “Accept-Encoding: gzip, deflate” header, it is

recommended not to set the wlGlobals.AcceptEncodingGzip flag because it is

performance heavy. However, some servers will fail if it is not sent. The default value

of AcceptEncodingGzip is false.

You may want to test your application in GZIP mode in the following cases:

 The server only works in GZIP mode and rejects any requests that do not enable

GZIP mode.

 GZIP is enabled and the server supports non-GZIP requests. A non-GZIP request

means that the web server does less work, but places more stress on the network

for large responses. This is acceptable if you are testing a back end server.

 38  Chapter 4. WebLOAD Actions, Objects, and Functions

However, if you realistically want to test an end-to-end system, enable GZIP

support.

GUI mode

In WebLOAD Recorder, select or deselect the GZip Support checkbox in the Browser

Parameters tab of the Default or Current Options dialog box, accessed from the Tools

tab of the ribbon.

In WebLOAD Console, select or deselect the GZip Support checkbox in the Browser

Parameters tab of the Default or Current Options dialog box or the Script Options

dialog box, accessed from the Tools tab of the ribbon.

Example

a.AcceptEncodingGZip = true

See also

 HTTP Components (on page 24)

AcceptLanguage (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Sets the wlGlobals.AcceptLanguage flag, which defines a global value for the

AcceptLanguage header. Some applications/servers will behave differently depending

on this setting. The AcceptLanguage flag is a simple string and WebLOAD does not

enforce any checks on the values assigned to it.

Example

wlGlobals.AcceptLanguage = “En-us”

GUI mode

In WebLOAD Recorder, select or deselect the Accept Language checkbox in the HTTP

Parameters tab of the Default or Current Options dialog box, accessed from the Tools

tab of the ribbon.

In WebLOAD Console, select or deselect the Accept Language checkbox in the HTTP

Parameters tab of the Default or Current Options dialog box or the Script Options

dialog box, accessed from the Tools tab of the ribbon.

JavaScript Reference Guide  39 

Comment

Some Asian sites check the AcceptLanguage property, and, if they think the client is

working in English, the flow might not be exactly as recorded.

action (property)

Property of Object

 form (see form (object) on page 95)

Description

Specifies the URL to which the form contents are to be sent for processing (read-only

string).

Example

Document.forms[0].action

Add() (method)

Method of Objects

 wlGeneratorGlobal (see wlGeneratorGlobal (object) on page 309)

 wlSystemGlobal (see wlSystemGlobal (object) on page 332)

Description

Adds the specified number value to the specified shared integer variable.

Syntax

Add(“SharedIntVarName”, number, ScopeFlag)

Parameters

Parameter Name Description

SharedIntVarName The name of a shared integer variable to be incremented.

number An integer with the amount to add to the specified variable.

 40  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameter Name Description

ScopeFlag One of two flags, WLCurrentAgenda or WLAllAgendas,

signifying the scope of the shared variable.

When used as a method of the wlGeneratorGlobal object:

 The WLCurrentAgenda scope flag signifies variable values

that you wish to share between all threads of a single script,

part of a single process, running on a single Load Generator.

 The WLAllAgendas scope flag signifies variable values that

you wish to share between all threads of one or more scripts,

common to a single spawned process, running on a single

Load Generator.

When used as a method of the wlSystemGlobal object:

 The WLCurrentAgenda scope flag signifies variable values

that you wish to share between all threads of a single script,

potentially shared by multiple processes, running on multiple

Load Generators, system wide.

 The WLAllAgendas scope flag signifies variable values that

you wish to share between all threads of all scripts, run by all

processes, on all Load Generators, system-wide.

Example

wlGeneratorGlobal.Add(“MySharedCounter”, 5, WLCurrentAgenda)

wlSystemGlobal.Add(“MyGlobalCounter”, 5, WLCurrentAgenda)

See also

 Get() (see Get() (addition method) on page 102)

 Set() (see Set() (addition method) on page 240)

AuthType (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

Specifies the authentication method to be used by the server: Kerberos or NTLM. The

default value is NTLM.

Note: The AuthType property is only relevant for playback.

Example

wlGlobals.AuthType = “Kerberos”

JavaScript Reference Guide  41 

GUI mode

To set the authentication method to be used by the server:

 In WebLOAD Console, select the authentication method in the Authentication tab

of the Default, Current Session, or Script Options dialog box, accessed from the

Tools tab of the ribbon.

 In WebLOAD Recorder, select the authentication method in the Authentication tab

of the Default or Current Project Options dialog box, accessed from the Tools tab

of the ribbon.

Comment

If the AuthType property was set to “Kerberos” and the server does not support

Kerberos, WebLOAD will automatically change the authentication method to

“NTLM”.

See also

 KDCServer() (see KDCServer (property) on page 158)

Async (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

 wlGlobals (see wlGlobals (object) on page 313)

Description

Causes the HTTP request to be asynchronous.

The possible values of wlHttp.Async are:

 false – the following HTTP command is synchronous (default).

 true – the following HTTP command is asynchronous.

When using asynchronous requests, the script does not wait for the request to

complete before moving on to the next statement. In order to work with the

response, you need to specify one of the asynchronous callback functions –

onDocumentComplete (property) and/or onDataReceived (property).

Example

wlHttp.Async = true;

wlHttp.onDocumentComplete = function(document) {

 InfoMessage(“Response “ + document.wlSource);

}

wlHttp.Get(“http://something”);

 42  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 HTTP Components (on page 24)

 onDocumentComplete (property) (on page 179)

 onDataReceived (property) (on page 177)

 The Using Asynchronous Requests chapter in the WebLOAD Scripting Guide

BeginTransaction() (function)

Description

Use the BeginTransaction() and EndTransaction() functions to define the start

and finish of a logical block of code that you wish to redefine as a single logical

transaction unit. This enables setting timers, verification tests, and other measurements

for this single logical unit.

Optionally, you can specify a period of time, which is the minimum amount of time for

the transaction. If the total time of the transaction is less than the time period specified,

the machine sleeps for the remainder of the time in order to simulate the intermittent

activity of real users.

The behavior of the sleep time is affected by the Sleep Time Control settings that are set

in the Current Project Options of the WebLOAD Recorder and Console. These settings

can be one of the following:

 Sleep time as recorded – Runs the script with the delays corresponding to the

natural pauses that occurred when recording the script.

 Ignore recorded sleep time (default) – Eliminates any pauses when running the

script and runs a worst-case stress test.

 Set random sleep time – Sets the ranges of delays to represent a range of users.

 Set sleep time deviation – Sets the percentage of deviation from the recorded

value to represent a range of users.

For more information on setting the Sleep Time Control settings, see Configuring Sleep

Time Control Options in the WebLoad Recorder User’s Guide.

Note: If the transaction fails, it still sleeps for the specified time interval. This is true

even if an error not directly connected to the transaction is received, for example,

HTTP 500 for a GET within the transaction.

Syntax

BeginTransaction(TransName, [SleepTime])

…

<any valid JavaScript code>

…

EndTransaction(TransName,Verification,[SaveFlag])

JavaScript Reference Guide  43 

Parameters

Parameter Name Description

TransName The name assigned to this transaction, a user-supplied string.

SleepTime An integer value specifying the interval of time (in milliseconds)

for the minimum amount of time for the transaction. .

GUI mode

Note: BeginTransaction() and EndTransaction() functions are usually

accessed and inserted into script files directly through the WebLOAD Recorder. For

example, the following figure illustrates a section in the Script Tree bracketed by

BeginTransaction and EndTransaction nodes. The EndTransaction node is highlighted

in the Script Tree.

Figure 7: Form Branch in Script Tree Bracketed by BeginTransaction and EndTransaction Nodes

To mark the beginning of a transaction, drag the Begin Transaction icon from the

Load toolbox into the Script Tree, directly above the first action you want to include in

the transaction. The Begin Transaction dialog box opens. For additional information

about the BeginTransaction() function, refer to Begin and End Transaction in the

WebLOAD Recorder User’s Guide.

See also

 EndTransaction() (see EndTransaction() (function) on page 88)

 44  Chapter 4. WebLOAD Actions, Objects, and Functions

 CreateTable() (see CreateTable() (function) on page 65)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 Transaction Verification Components (on page 36)

 TransactionTime (see TransactionTime (property) on page 287)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

cell (object)

Property of Objects

cell objects are grouped into collections of cells. The cells collection is a property

of the following objects:

 row (see row (object) on page 223)

 wlTables (see wlTables (object) on page 333)

Description

A cell object contains all the data found in a single table cell. If the cells collection

is a property of a wlTables object, then the collection refers to all the cells in a

particular table. If the cells collection is a property of a row object, then the collection

refers to all the cells in a particular row. Individual cell objects may be addressed by

index number, similar to any object within a collection.

Syntax

Individual cell objects may be addressed by index number, similar to any object

within a collection. For example, to access a property of the 16th cell in myTable,

counting across rows and with the first cell indexed at 0, you could write:

document.wlTables.myTable.cells[15].<cell-property>

If you are working directly with the cells in a wlTables object, as opposed to the cells

within a single row object, you may also specify a range of cells from anywhere within

the table using the standard spreadsheet format. Specify a group of cells using a string

with the following format:

 Use letters to indicate columns, starting with the letter A to represent the first

column.

 Use numbers to indicate rows, starting with the number 1 to represent the first

column.

JavaScript Reference Guide  45 

Note: This is not typical-the standard JavaScript index begins at 0 to represent the first

element in a set.

Example

For cells within a wlTables object:

document.wlTables.myTable.cells[“A1:C3”]

In this example, the string “A1:C3” includes all cells from the first column of the

first row up to the third column in the third row, reading across rows. This means that

the first cell read is in the first column of the first row, the second cell read is in the

second column of the first row, the third cell read is in the third column of the first

row, and so on until the end of the first row. If the table includes eight columns, then

the ninth cell read will be in the first column of the second row, and so on.

For cells within a row object:

To access a property of the 4th cell in the 3rd row in myTable, counting across rows

and with the first cell indexed at 0, you could write:

document.wlTables.myTable.rows[2].cells[3].<cell-property>

Note: Individual table cells often are merged and span multiple rows. In such a case,

the cell will only appear in the collection for the first of the set of rows that the cell

spans.

Properties

Each cell object contains information about the data found in one cell of a table. The

cell object includes the following properties:

 cellIndex (see cellIndex (property) on page 46)

 InnerHTML (see InnerHTML (property) on page 154)

 InnerText (see InnerText (property) on page 156)

 tagName (see tagName (property) on page 279)

Comment

cell is often accessed through the wlTables family of table, row, and cell objects.

See also

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 46  Chapter 4. WebLOAD Actions, Objects, and Functions

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 tagName (see tagName (property) on page 279) (cell property)

 wlTables (see wlTables (object) on page 333)

cellIndex (property)

Property of Object

 cell (see cell (object) on page 44)

Description

An integer containing the ordinal index number of this cell object within the parent

table or row. Cells are indexed starting from zero, so the cellIndex of the first cell in

a table or row is 0.

Comment

cellIndex is a member of the wlTables family of table, row, and cell objects.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

JavaScript Reference Guide  47 

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 tagName (see tagName (property) on page 279) (cell property)

 wlTables (see wlTables (object) on page 333)

CharEncoding (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Contains the value corresponding to the character set being used. The default value is

Default (0), the regional settings of the computer. For a complete list of the supported

character sets, see WebLOAD–supported Character Sets on page 479.

Example

If you want to specify that you are using Japanese (EUC), set the value of

CharEncoding as follows:

wlGlobals.CharEncoding = 51932

GUI Mode

In WebLOAD Console, select a character set in Character Encoding list box in the

Browser Parameters tab of the Default Options or Current Session Options dialog

box, accessed from the Tools tab of the ribbon.

In WebLOAD Recorder, select a character set in the Character Encoding list box in the

Browser Parameters tab of the Default or Current Project Options dialog box,

accessed from the Tools tab of the ribbon.

See also

 EnforceCharEncoding (see EnforceCharEncoding (property) on page 87)

 48  Chapter 4. WebLOAD Actions, Objects, and Functions

checked (property)

Property of Object

 element (see element (object) on page 80)

Description

For an <INPUT type=“checkbox”> or <INPUT type=“radio”> element, the

checked property indicates whether the element has the HTML checked attribute,

that is, whether the element is selected. The property has a value of true if the element

has the checked attribute, or false otherwise (read-only).

ClearAll() (method)

Method of Object

 wlCookie (see wlCookie (object) on page 302)

Description

Delete all cookies set by wlCookie in the current thread.

Syntax

wlCookie.ClearAll()

ClearCookiesAtEndOfRound (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

Indicates whether to clear the cookies at the end of each round. The default value of

ClearCookiesAtEndOfRound is true. By setting this flag to false, the cookies list will

not be cleared at the end of each round.

Example

wlGlobals.ClearCookiesAtEndOfRound = false

JavaScript Reference Guide  49 

ClearDNSCache() (method)

Method of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Clear the IP address cache.

Syntax

wlHttp.ClearDNSCache()

GUI mode

In WebLOAD Console, disable caching for the Load Generator or for the Probing

Client during a test session by clearing the appropriate box in the Browser Parameters

tab of the Default, Current Session Options or Script Options dialog box, accessed

from the Tools tab of the ribbon.

In WebLOAD Recorder, disable caching during execution by clearing the appropriate

box in the Browser Parameters tab of the Default or Current Project Options dialog

box, accessed from the Tools tab of the ribbon.

Comment

To enable or disable DNS caching, set the DNSUseCache (see DNSUseCache (property)

on page 77) property.

See also

 HTTP Components (on page 24)

 ClearSSLCache() (see ClearSSLCache() (method) on page 49)

 DNSUseCache (see DNSUseCache (property) on page 77)

 SSLUseCache (see SSLUseCache (property) on page 272)

ClearSSLCache() (method)

Method of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

 50  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

Clear the SSL decoding-key cache.

Syntax

wlHttp.ClearSSLCache()

GUI mode

In WebLOAD Console, disable the SSL cache for the Load Generator or for the Probing

Client during a test session by clearing the appropriate box in the Browser Parameters

tab of the Default, Current Session Options or Script Options dialog box, accessed

from the Tools tab of the ribbon..

In WebLOAD Recorder, disable the SSL cache during execution by clearing the

appropriate box in the Browser Parameters tab of the Default or Current Project

Options dialog box, accessed from the Tools tab of the ribbon..

Comment

To enable or disable SSL caching, set the SSLUseCache (see SSLUseCache (property) on

page 272) property.

See also

 HTTP Components (on page 24)

 ClearDNSCache() (see ClearDNSCache() (method) on page 49)

 DNSUseCache (see DNSUseCache (property) on page 77)

 SSLUseCache (see SSLUseCache (property) on page 272)

ClientNum (property)

Description

ClientNum is set to the serial number of the client in the WebLOAD test

configuration. ClientNum is a read-only local property. Each client in a Load

Generator has a unique ClientNum. However, two clients in two different Load

Generators may have the same ClientNum.

Note: While ClientNum is unique within a single Load Generator, it is not unique

system wide. Use VCUniqueID() (see VCUniqueID() (function) on page 296) to obtain an

ID number which is unique system-wide.

If there are N clients in a Load Generator, the clients are numbered 0, 1, 2, ...,

N-1. You can access ClientNum anywhere in the local context of the Script

(InitClient(), main script, TerminateClient(), etc.). ClientNum does not exist

in the global context (InitAgenda(), TerminateAgenda(), etc.).

JavaScript Reference Guide  51 

If you mix Scripts within a single Load Generator, instances of two or more Scripts

may run simultaneously on each client. Instances on the same client have the same

ClientNum value.

ClientNum reports only the main client number. It does not report any extra threads

spawned by a client to download nested images and frames (see LoadGeneratorThreads

(property) on page 165).

Comment

Earlier versions of WebLOAD referred to this value as ThreadNum. The variable name

ThreadNum will still be recognized for backward compatibility.

GUI mode

WebLOAD recommends accessing global system variables, including the ClientNum

identification property, through the WebLOAD Recorder. The variables that appear in

this list are available for use at any point in a script file. In the WebLOAD Recorder

main window, click Variable Windows in the Debug tab of the ribbon..

For example, it is convenient to add ClientNum to a Message Node to clarify which

client sent the messages that appear in the WebLOAD Console Log window.

Figure 8: Variables Window

See also

 GeneratorName() (see GeneratorName() (function) on page 101)

 GetOperatingSystem() (see GetOperatingSystem() (function) on page 131)

 Identification Variables and Functions (on page 29)

 RoundNum (see RoundNum (variable) on page 222)

 ThreadNum (see ThreadNum() (property) on page 282)

 VCUniqueID() (see VCUniqueID() (function) on page 296)

 52  Chapter 4. WebLOAD Actions, Objects, and Functions

Close() (function)

Method of Object

 wlOutputFile (see wlOutputFile (object) on page 323)

Description

Closes an open file. When called as a method of the wlOutputFile object, closes the

open output file being managed by that object.

Syntax

Function call:

Close(filename)

wlOutputFile method:

wlOutputFile.Close()

Parameters

Parameter Name Description

Function call:

Filename A string with the name of the ASCII output file to be closed.

wlOutputFile method: No parameter is necessary when this function is called as a

method of the wlOutputFile object, since the file to be closed is

already known.

Example

Function call:

Close(MyFavoriteFile)

wlOutputFile method:

MyFileObj = new wlOutputFile(filename)

…

MyFileObj.Close()

Comment

When you use the Close() function to close a file, data will be flashed to the disk.

See also

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

JavaScript Reference Guide  53 

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile (see wlOutputFile (object) on page 323)

 wlOutputFile() (see wlOutputFile (object) on page 323)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

CloseConnection() (method)

Method of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Closes all open connections. If CloseConnection() is not called, all connections that

were opened with the KeepAlive option (see KeepAlive (property) on page 159) remain

open until the end of the round. HTTP connections are automatically closed at the end

of each round.

Syntax

wlHttp.CloseConnection()

GUI mode

WebLOAD recommends maintaining or closing connections through the WebLOAD

Console. Enable maintaining connections for the Load Generator or for the Probing

Client during a test session by checking the appropriate box in the Browser Parameters

tab of the Default Options dialog box, accessed from the Tools tab of the ribbon..

In WebLOAD Console, enable maintaining connections for the Load Generator or for

the Probing Client during a test session by checking the appropriate box in the Browser

Parameters tab of the Default Options or Current Session Options dialog box,

accessed from the Tools tab of the ribbon..

In WebLOAD Recorder, enable maintaining connections during execution by checking

the appropriate box in the Browser Parameters tab of the Tools  Default or Current

Project Options dialog box.

See also

 HTTP Components (on page 24)

 54  Chapter 4. WebLOAD Actions, Objects, and Functions

 KeepAlive (see KeepAlive (property) on page 159)

cols (property)

Property of Object

 element (see element (object) on page 80)

 wlTables (see wlTables (object) on page 333)

Description

When working with wlTables objects, an integer containing the number of columns

in this table. The column number is taken from the COLS attribute in the <TABLE> tag.

This property is optional. If the table does not have a COLS attribute then the value is

undefined. When working with element objects of type TextArea, an integer

containing the number of columns in this TextArea.

Comment

cols is often accessed through the wlTables family of table, row, and cell objects.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 tagName (see tagName (property) on page 279) (cell property)

JavaScript Reference Guide  55 

ConnectTimeout (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

ConnectTimeout is used to set the amount of time the system will wait for an HTTP

connection to be established before timing out. The ConnectTimeout property is

defined in milliseconds. Use the ConnectTimeout property to fine tune the Load

Generator performance.

Example

wlGlobals.ConnectTimeout = 7

See also

 HTTP Components (on page 24)

ConnectionSpeed (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

Description

WebLOAD allows users to simulate various system and connection configurations,

including setting a ‘virtual limit’ on the connection speed available during a test

session. Obviously, the speed of the connection to a website is an important factor in

the response time seen by users. Setting a limit on the connection speed during a test

session allows testers working with higher-speed connections within their own labs to

test systems for clients that may be limited in their own workplace connection speeds.

By default, WebLOAD will work with the fastest available connection speed. Testers

may set the connection speed to any slower value, measured in bits per second (bps).

For example, users may set values of 14,400 bps, 28,800 bps, etc.

Note: The typical single ISDN line can carry 64 Kb, a double line carries 128 Kb, and a

T1 line can handle 1.5 Mb.

 56  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

You may assign a connection speed using the wlGlobals.ConnectionSpeed

property. For example:

InitAgenda()

{

wlGlobals.ConnectionSpeed=28800

}

// main Script body

wlHttp.Get(“http://abcdef”)

Sleep(1000)

GUI mode

WebLOAD recommends setting the connection speed through the WebLOAD Console.

You may set different connection speed limits for both the Load Generator and the

Probing Client through the checkboxes on the Connection tab of the Default Options

dialog box, accessed from the Tools tab of the ribbon.

See also

 HTTP Components (on page 24)

content (property)

Property of Object

 wlMetas (see wlMetas (object) on page 320)

Description

Retrieves the value of the CONTENT attribute of the META tag (read-only string).

Syntax

wlMetas[index#].content

Example

document.wlMetas[0].content

See also

 httpEquiv (see httpEquiv (property) on page 144)

 Name (see Name (property) on page 174)

 Url (see Url (property) on page 289)

JavaScript Reference Guide  57 

ContentLength (function)

Description

Verifies the content length of the service response.

Syntax

wlVerification.ContentLength(operator, length, severity)

Parameters

Parameter Name Description

operator One of the following mathematical operators:

 < - less than.

 > - greater than.

 = - equal to.

length The expected length of the content in bytes.

severity Possible values of this parameter are:

 WLSuccess. The transaction terminated successfully.

 WLMinorError. This specific transaction failed, but the test

session may continue as usual. The Script displays a warning

message in the Log window and continues execution from the

next statement.

 WLError. This specific transaction failed and the current test

round was aborted. The Script displays an error message in

the Log window and begins a new round.

 WLSevereError. This specific transaction failed and the test

session must be stopped completely. The Script displays an

error message in the Log window and the Load Generator on

which the error occurred is stopped.

Example

The following code verifies that the page content length is equal to 120 bytes. In case of

failure, WebLOAD displays a fatal error and stops the execution.

wlVerification.ContentLength("=" , 120, WLSevereError);

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 Severity (see Severity (property) on page 247)

 58  Chapter 4. WebLOAD Actions, Objects, and Functions

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

ContentType (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Specifies the content type of the HTTP request.

Example

wlGlobals.ContentType = “text/html”

See also

 HTTP Components (on page 24)

ConvertHiddenFields(method)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Converts hidden fields to dynamic values. This is done by correlate the Script so it uses

the dynamic value of the field, not the value recorded in the Script.

The ConvertHiddenFields method takes the URL to be submitted via a Get or Post

action and searches for it in the current DOM. This is done by looping over the

document.form[] collection until it finds a form whose action matches the URL. It then

loops over its elements[] collection. Each element whose type is “hidden” is then

inserted into the wlHttp.FormData collection, overriding any existing value. The

recorded values are replaced by the dynamic values during playback.

JavaScript Reference Guide  59 

Note: ConvertHiddenFields cannot be accessed directly by the user. See the example in

the Comment section below.

Syntax

Use

SaveCurrentHiddenFields(url)

after the page with the fields and specify the URL of the page.

Comment

Because the WebLOAD Recorder does not filter internal frames of a page, there are

cases when the data required for the correlation will not be found in the DOM of the

previous request.

For example:

The page you are working with is called frame1.html and is an internal frame of a page

called page.html, which has four internal frames (frame1 - frame 4). You recorded a

navigation to page.html and then submitted the form on frame1.html. Thus, your

Script would appear as follows:

Get page.html

Get frame1.html

Get frame2.html

Get frame3.html

Get frame4.html

Post the form from frame1.html

In order to correlate the data for the final Post, you need the document from frame1.

The intervening Get’s, however, will not enable you to get this document. Manually

insert the SaveCurrentHiddenFields() method after frame1.html in this example. This

method saves the hidden fields so that the automatic correlation can use it when

needed.

CookieDomain (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

 60  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

When set to true, the client checks if the cookie domain matches the request domain

during GET/POST. Use this property if you need to emulate the setting of client side

cookies or modify server cookies on the client side.

Note: This property can only be inserted manually.

Example

wlGlobals.CookieDomain = false

See also

 CookieExpiration (see CookieExpiration (property) on page 60)

 CookiePath (see CookiePath (property) on page 60)

CookieExpiration (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

When set to true, the client checks if the cookie expiration matches the system time

during GET/POST. Use this property if you need to emulate the setting of client side

cookies or modify server cookies on the client side.

Note: This property can only be inserted manually.

Example

wlGlobals.CookieExpiration = false

See also

 CookieDomain (see CookieDomain (property) on page 59)

 CookiePath (see CookiePath (property) on page 60)

CookiePath (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

JavaScript Reference Guide  61 

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

When set to true, the client checks if the cookie path matches the request path during

GET/POST. Use this property if you need to emulate the setting of client side cookies

or modify server cookies on the client side.

Note: This property can only be inserted manually.

Example

wlGlobals.CookiePath = false

See also

 CookieDomain (see CookieDomain (property) on page 59)

 CookieExpiration (see CookieExpiration (property) on page 60)

CopyFile() (function)

Description

Copies files from a source file on the console to a destination file on the Load

Generator. The destination file is either explicitly or automatically named. CopyFile

can copy both text and binary data files.

Syntax

CopyFile(SrcFileName [, DestFileName])

Parameters

Parameter Name Description

SrcFileName A literal string or variable containing the full literal name of the

file to be copied. WebLOAD assumes that the source file is located

in the default directory specified in the File Locations tab (User

Copy Files entry) in the Tools  Global Options dialog box in the

WebLOAD Console or in the Tools  Settings dialog box in the

WebLOAD Recorder. For additional information about the file’s

location, refer to Determining the Included File Location in the

WebLOAD Scripting Guide.

DestFileName An optional literal string or variable containing the full literal

name of the file into which the source file will be copied. If the

target parameter is omitted, WebLOAD will copy the source file to

the current directory and return the file name as the return value

of the CopyFile function.

 62  Chapter 4. WebLOAD Actions, Objects, and Functions

Return Value

Optionally, a string with the target file name, returned if the DestFileName

parameter is not specified.

Example

To copy the auxiliary file src.txt, located on the WebLOAD Console, to the

destination file dest.txt on the current Load Generator, use the following command:

function InitAgenda() {

…

CopyFile(“src.txt”, “dest.txt”)

…

}

You may then access the file as usual in the main body of the Script. For example:

DataArr = GetLine(“dest.txt”)

It is convenient to specify only the SrcFileName. To copy the auxiliary file

file.dat, located on the WebLOAD Console, to the current Load Generator, using a

single file name:

function InitAgenda() {

…

filename = CopyFile(“file.dat”)

…

}

…

GetLine(filename)

…

GUI mode

Note: CopyFile() and IncludeFile() functions can be added directly to the code

in a script through the IntelliSense Editor, described in Using the IntelliSense JavaScript

Editor (on page 18).

Comment

WebLOAD does not create new directories, so any directories specified as target

directories must already exist.

The CopyFile command must be inserted in the InitAgenda() section of your

JavaScript program.

The load engine first looks for the file to be copied in the default User Copy Files

directory. If the file is not there, the file request is handed over to WebLOAD, which

searches for the file using the following search path order:

JavaScript Reference Guide  63 

1. If a full path name has been hardcoded into the CopyFile command, the system

searches the specified location. If the file is not found in an explicitly coded

directory, the system returns an error code of File Not Found and will not search in

any other locations.

Note: It is not recommended to hardcode a full path name, since the Script will then

not be portable between different systems. This is especially important for networks

that use both UNIX and Windows systems.

2. Assuming no hardcoded full path name in the Script code, the system looks for the

file in the current working directory, the directory from which WebLOAD was

originally executed.

3. Finally, if the file is still not found, the system searches for the file sequentially

through all the directories listed in the File Locations tab.

See also

 Close() (see Close() (function) on page 52)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile (see wlOutputFile (object) on page 323)

 wlOutputFile() (see wlOutputFile (object) on page 323)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

CreateDOM() (function)

Description

CreateDOM functions return a complete Document Object Model (DOM) tree. You

may compare this expected DOM to the actual DOM generated automatically as your

JavaScript Script runs.

Note: WebLOAD uses an extended version of the standard DOM. For more

information, see Understanding the WebLOAD DOM structure in the WebLOAD Scripting

Guide.

 64  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

DOM = CreateDOM(HTMLFileName)

Parameters

Parameter Name Description

HTMLFileName A literal string or variable containing the full literal name of the

HTML file in which the information about the expected DOM is

found.

Return Value

Returns a complete Document Object Model (DOM) tree.

Example

DOM = CreateDOM(“HTMLsource”)

Comment

One of the most common practices in functional testing is to compare a known set of

correct results previously generated by an application (expected data) to the results

produced by an actual current execution of the application (actual data). These sets of

results are stored in various Document Object Models (DOMs).

The actual DOM is created automatically each time an HTTP request is accessed

through the document object. The expected DOM is assigned by the user to a specific

HTTP command. To make the verification functions more easily readable, WebLOAD

uses the alias ACTUAL to access the actual document and the alias EXPECTED to

access the expected document.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 TransactionTime (see TransactionTime (property) on page 287)

 Transaction Verification Components (on page 36)

JavaScript Reference Guide  65 

CreateTable() (function)

Description

WebLOAD provides a CreateTable function to automatically convert the tables

found on an HTML page to parallel wlTables objects. This simplifies access to the

exact table entry in which the user is interested. The CreateTable() function returns

a window object that includes a wlTables collection. This is a collection of wlTables

objects, each of which corresponds to one of the tables found on the HTML page used

as the function parameter. The table data may be accessed as any standard wlTables

data.

Syntax

CreateTable(HTMLFileName)

Parameters

Parameter Name Description

HTMLFileName A literal string or variable containing the full literal name of the

HTML file in which the tables to be converted are found.

Return Value

Returns a window object that includes a wlTables collection.

Example

NewTableSet = CreateTable(“HTMLTablePage”)

NumTables = NewTableSet.wlTables.length

FirstTableName = NewTableSet.wlTables[0].id

Comment

CreateTable() is a member of the wlTables family of table, row, and cell objects.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 TransactionTime (see TransactionTime (property) on page 287)

 Transaction Verification Components (on page 36)

 66  Chapter 4. WebLOAD Actions, Objects, and Functions

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

 wlTables (see wlTables (object) on page 333)

Data (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Holds a string to be submitted in an HTTP Post command. The Data property has two

subfields:

Data.Type – The MIME type for the submission

Data.Value – The string to submit

You can use Data in two ways:

 As an alternative to FormData if you know the syntax of the form submission.

 To submit a string that is not a standard HTML form and cannot be represented by

FormData.

Data is for posting data that is not meant to be HTTP encoded, for example Web

service calls.

Example

Thus the following three code samples are equivalent:

//Sample 1

wlHttp.Data.Type = “application/x-www-form-urlencoded”

wlHttp.Data.Value = “SearchFor=icebergs&SearchType=ExactTerm”

wlHttp.Post(“http://www.ABCDEF.com/query.exe”)

//Sample 2

wlHttp.FormData.SearchFor = “icebergs”

wlHttp.FormData.SearchType = “ExactTerm”

wlHttp.Post(“http://www.ABCDEF.com/query.exe”)

//Sample 3

wlHttp.Post(“http://www.ABCDEF.com/query.exe” +

 “?SearchFor=icebergs&SearchType=ExactTerm”)

Methods

 wlClear() (see wlClear() (method) on page 301)

JavaScript Reference Guide  67 

Properties

 type (see type (property) on page 288)

 value (see value (property) on page 294)

Comment

Data and DataFile are both collections that hold sets of data. Data collections are

stored within the Script itself, and are useful when you prefer to see the data directly.

DataFile collections store the data in local text files, and are useful when you are

working with large amounts of data, which would be too cumbersome to store within

the Script code itself. When working with DataFile collections, only the name of the

text file is stored in the Script itself.

Your Script should work with either Data or DataFile collections. Do not use both

properties within the same Script.

See also

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

DataFile (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

A file to be submitted in an HTTP Post command.

WebLOAD sends the file using a MIME protocol. DataFile has two subfields:

 DataFile.Type-the MIME type

 DataFile.FileName-the name of the file, for example,

 “c:\\MyWebloadData\\BigFile.doc”

WebLOAD sends the file when you call the wlHttp.Post() method.

 68  Chapter 4. WebLOAD Actions, Objects, and Functions

Methods

 wlClear() (see wlClear() (method) on page 301)

Properties

 FileName (see FileName (property) on page 93)

Comment

DataFile is used for sending files and parallels the posting of mulipart data in

HTML. Data and DataFile are both collections that hold sets of data. Data

collections are stored within the Script itself, and are useful when you prefer to see the

data directly. DataFile collections store the data in local text files, and are useful

when you are working with large amounts of data which would be too cumbersome to

store within the Script code itself, or binary data. When working with DataFile

collections, only the name of the text file is stored in the Script itself.

See also

 Data (see Data (property) on page 66)

 Erase (see Erase (property) on page 88)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

 value (see value (property) on page 294)

DebugMessage() (function)

Description

Displays a debug message in the Log View of WebLOAD Recorder.

Syntax

DebugMessage(msg)

Parameters

Parameter Name Description

msg A string with an informative message to be sent to WebLOAD

Recorder, to be displayed in the Log View.

Comment

If you call DebugMessage() in the main script, WebLOAD sends a debug message to

the Log View of WebLOAD Recorder. The message is not written to the Console’s Log

JavaScript Reference Guide  69 

View during script execution and has no impact on the continued execution of the

Script.

GUI mode

WebLOAD recommends adding message functions to your Script files directly through

the WebLOAD Recorder. Drag the Message icon from the General toolbox into the

Script Tree at the desired location.

See also

 InfoMessage() (see InfoMessage() (function) on page 153)

DecodeBinaryEnd (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The DecodeBinaryEnd property is used in conjunction with SaveSource and

document.wlSource to enable the user to parse binary data returned from the server.

SaveSource and document.wlSource are used to store the server response in wlSource.

Since the JavaScript engine does not know how to represent NULLs (binary 0), the

engine will convert all binary nulls in the response body to the value of the

DecodeBinaryNullAs string. The DecodeBinaryEnd and DecodeBinaryStart properties

are used to limit this action to a specific range in the response buffer. If they are not set,

the engine will search for binary nulls in the entire buffer. DecodeBinaryEnd and

DecodeBinaryStart are used as performance safeguards in case the buffer is very large

and you want to parse a section at the start of the buffer.

The value of DecodeBinaryEnd starts from 0 and designates an offset from the

beginning of the buffer. The default value of DecodeBinaryEnd is -1. This indicates that

starting from the DecodeBinaryStart location until the end of the buffer will be

converted to binary nulls.

Note: This property can only be inserted manually.

Example

wlGlobals.DecodeBinaryEnd=4

See also

 DecodeBinaryNullAs (see DecodeBinaryNullAs (property) on page 70)

 70  Chapter 4. WebLOAD Actions, Objects, and Functions

 DecodeBinaryStart (see DecodeBinaryStart (property) on page 70)

DecodeBinaryNullAs (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Supports the decoding of binary data. Decoding is not performed by default. In order

to decode binary data, the user must call DecodeBinaryNullAs and provide a string

value to replace the NULL character.

Note: This property can only be inserted manually.

Syntax

wlGlobals.DecodeBinaryNullAs = “TextString”

Example

WLGlobals.DecodeBinaryNullAs = “Classified”

See also

 DecodeBinaryEnd (see DecodeBinaryEnd (property) on page 69)

 DecodeBinaryStart (see DecodeBinaryStart (property) on page 70)

DecodeBinaryStart (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The DecodeBinaryStart property is used in conjunction with SaveSource and

document.wlSource to enable the user to parse binary data returned from the server.

SaveSource and document.wlSource are used to store the server response in wlSource.

Since the JavaScript engine does not know how to represent NULLs (binary 0), the

engine will convert all binary nulls in the response body to the value of the

DecodeBinaryNullAs string. The DecodeBinaryEnd and DecodeBinaryStart properties

JavaScript Reference Guide  71 

are used to limit this action to a specific range in the response buffer. If they are not set,

the engine will search for binary nulls in the entire buffer. DecodeBinaryEnd and

DecodeBinaryStart are used as performance safeguards in case the buffer is very large

and you want to parse a section at the start of the buffer.

The value of DecodeBinaryEnd starts from 0 and designates an offset from the

beginning of the buffer. The default value of DecodeBinaryStart is -1. This indicates

that starting from the beginning of the buffer until the DecodeBinaryEnd location will

be converted to binary nulls.

Note: This property can only be inserted manually.

Example

wlGlobals.DecodeBinaryStart=1

See also

 DecodeBinaryEnd (see DecodeBinaryEnd (property) on page 69)

 DecodeBinaryNullAs (see DecodeBinaryNullAs (property) on page 70)

defaultchecked (property)

Property of Object

 element (see element (object) on page 80)

Description

For an <INPUT type=“checkbox”> or <INPUT type=“radio”> element, the

default checked value of the form element (read-only string).

See also

 checked (see checked (property) on page 48)

 cols (see cols (property) on page 54)

 defaultvalue (see defaultvalue (property) on page 72)

 id (see id (property) on page 146)

 InnerText (see InnerText (property) on page 156)

 MaxLength (see MaxLength (property) on page 170)

 Name (see Name (property) on page 174)

 option (see option (object) on page 185)

 row (see row (object) on page 223)

 selectedindex (see selectedindex (property) on page 235)

 72  Chapter 4. WebLOAD Actions, Objects, and Functions

 Size (see Size (property) on page 247)

 title (see title (property) on page 284)

 type (see type (property) on page 288)

 Url (see Url (property) on page 289)

 value (see value (property) on page 294)

defaultselected (property)

Property of Object

 option (see option (object) on page 185)

Description

Returns a Boolean value specifying whether this option was the one originally

“selected” before any user acted upon this “select” control.

See also

 defaultchecked (see defaultchecked (property) on page 71)

 selected (see selected (property) on page 235)

 value (see value (property) on page 294)

defaultvalue (property)

Property of Object

 element (see element (object) on page 80)

Description

The default value of the form element (read-only string).

DefineConcurrent() (function)

Description

Use the DefineConcurrent()function to define the beginning point, after which all

Post and Get HTTP requests are collected, but not executed, until an

ExecuteConcurrent() function is run. At this point, the collected HTTP requests

are executed concurrently, by two or more threads. The number of threads is defined

JavaScript Reference Guide  73 

in WebLOAD Console in the multithreading number in the Browser Parameters tab of

the Script Options dialog box.

To simultaneously execute Post and Get HTTP requests, you must define where in the

script to begin collecting the requests and where to stop collecting and begin executing

them. The HTTP requests are collected until the engine encounters an

ExecuteConcurrent() function in the script. For more information about the

ExecuteConcurrent() function, see ExecuteConcurrent() (function) (on page 92).

All requests performed from the beginning of the DefineConcurrent() function to

the ExecuteConcurrent() function are stored in an array of documents. You can

access every document by index number or document name as follows:

 By index: wlConcurrentDocuments[i]

 By DocName: wlConcurrentDocuments["documentname"]

The DocName is an optional name you set for a document for quick access from

wlConcurrentDocuments. The format for setting the name is:
wlHttp.DocName = “documentname”

where DocName is written with a capital D and N.

The default document name is: all_Concurrent_<index>.

Example

DefineConcurrent()

…

<any valid JavaScript code, including Post and Get requests>

wlHttp.DocName = "document"

…

ExecuteConcurrent()

for (i=0;i<wlConcurrentDocuments.length;i++)

InfoMessage("index "+i+" : "+wlConcurrentDocuments[i].URL)

InfoMessage("by DocName: "+wlConcurrentDocuments["document"].URL)

InfoMessage("default name: "

+wlConcurrentDocuments["all_Concurrent_2"].URL)

GUI mode

Note: The DefineConcurrent()function is usually inserted into script files directly

through the WebLOAD Recorder. Drag the Define Concurrent icon from the Load

toolbox into the Script Tree at the desired location.

For additional information about the DefineConcurrent() function, refer to Define

Concurrent in the WebLOAD Recorder User’s Guide.

See also

 ExecuteConcurrent() (see ExecuteConcurrent() (function) on page 92)

 74  Chapter 4. WebLOAD Actions, Objects, and Functions

Delete() (method)

Delete() (HTTP method)

Method of Objects

This function is implemented as a method of the following object:

 wlHttp (see wlHttp (object) on page 316)

Description

Perform an HTTP or HTTPS Delete command.

Syntax

Delete([URL]

Parameters

Parameter Name Description

[URL] An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the

method. Delete() connects to the first URL that has been

specified from the following list, in the order specified:

 A Url parameter specified in the method call.

 The Url property of the wlHttp object.

 The local default wlLocals.Url.

 The global default wlGlobals.Url.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Head() (see Head() (method) on page 139)

 Header (see Header (property) on page 140)

JavaScript Reference Guide  75 

 Options() (see Options() (method) on page 186)

 Post() (see Post() (method) on page 205)

 Put() (see Put() (method) on page 213)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

Delete() (cookie method)

Method of Objects

 wlCookie (see wlCookie (object) on page 302)

Description

This method deletes all cookies set by wlCookie in the current thread.

Syntax

wlCookie.Delete(name, domain, path)

Parameters

Parameter Name Description

name A descriptive name used for the cookie to be deleted, for example,

“CUSTOMER”.

domain The top-level domain name for the cookie being deleted, for

example, “www.ABCDEF.com”.

path The top-level directory path, within the specified domain, for the

cookie being deleted, for example, “/”.

Example

wlCookie.Delete(“CUSTOMER”, “www.ABCDEF.com”, “/”)

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 76  Chapter 4. WebLOAD Actions, Objects, and Functions

 Using the IntelliSense JavaScript Editor (on page 18)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

DeleteEmptyCookies (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Indicates whether to delete existing cookies if the server sends a “set-cookie” header

with empty values for the existing cookies. If DeleteEmptyCookies is false, the existing

cookies are set to their empty value (null). The default value of DeleteEmptyCookies is

false.

Example

wlGlobals.DeleteEmptyCookies = false

Comments

Some servers tell the client to delete existing cookies by sending the client empty

cookies.

DisableSleep (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

Setting this property defines how the engine should handle the Sleep command in the

script. This boolean flag indicates whether the recorded sleep pauses will be included

in the test session (false) or ignored (true).

Example

wlGlobals.DisableSleep = true

JavaScript Reference Guide  77 

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period

recorded by the user during the original recording session. If you wish to include sleep

intervals but change the time period, set DisableSleep to false and assign values

to the other sleep properties as follows:

 SleepRandomMin – Assign random sleep interval lengths, with the minimum

time period equal to this property value.

 SleepRandomMax – Assign random sleep interval lengths, with the maximum

time period equal to this property value.

 SleepDeviation – Assign random sleep interval lengths, with the time period

ranging between this percentage value more or less than the original recorded time

period.

GUI mode

WebLOAD recommends setting the sleep mode through the WebLOAD Console.

Select a setting from the Sleep Time Control tab of the Default, Current or Script

Options dialog box, accessed from the Tools tab of the ribbon.

See also

 Sleep() (see Sleep() (function) on page 248)

 SleepDeviation (see SleepDeviation (property) on page 249)

 SleepRandomMax (see SleepRandomMax (property) on page 250)

 SleepRandomMin (see SleepRandomMin (property) on page 251)

DNSUseCache (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enable caching of IP addresses that WebLOAD receives from a domain name server.

The value of DNSUseCache may be:

 false – Disable IP address caching.

 true – Enable IP address caching (default).

 78  Chapter 4. WebLOAD Actions, Objects, and Functions

Assign a true value to reduce the time for domain name resolution. Assign a false

value if you want to include the time for name resolution in the WebLOAD

performance statistics.

GUI mode

WebLOAD recommends enabling or disabling the DNS cache through the WebLOAD

Console. Enable caching for the Load Generator or for the Probing Client during a test

session by checking the appropriate box in the Browser Parameters tab of the Default

Options dialog box, accessed from the Tools tab of the ribbon.

Comment

To clear the DNS cache, set the ClearDNSCache() (see ClearDNSCache() (method) on

page 49) property.

See also

 HTTP Components (on page 24)

 ClearDNSCache() (see ClearDNSCache() (method) on page 49)

 ClearSSLCache() (see ClearSSLCache() (method) on page 49)

 SSLUseCache (see SSLUseCache (property) on page 272)

document (object)

Description

Represents the HTML document in a given browser window. The document object is

one of the main entry points into the DOM, used to retrieve parsed HTML data.

document objects store the complete parse results for downloaded HTML pages. Use

the document properties to retrieve links, forms, nested frames, and other information

about the document.

document objects are local to a single thread. WebLOAD creates an independent

document object for each thread of a script. You cannot create new document objects

using the JavaScript new operator, but you can access HTML documents through the

properties and methods of the standard DOM objects. document properties are read-

only.

Syntax

Access all elements of the Browser DOM through the document object, using the

standard syntax. For example, to access links, use the following expression:

document.links[0]

JavaScript Reference Guide  79 

Methods

 wlGetAllForms() (see wlGetAllForms() (method) on page 311)

 wlGetAllFrames() (see wlGetAllFrames() (method) on page 312)

 wlGetAllLinks() (see wlGetAllLinks() (method) on page 312)

Properties

 form (see form (object) on page 95)

 frames (see frames (object) on page 99)

 Image (see Image (object) on page 149)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

 script (see script (object) on page 228)

 title (see title (property) on page 284)

 wlHeaders (see wlHeaders (object) on page 314)

 wlMetas (see wlMetas (object) on page 320)

 wlSource (see wlSource (property) on page 330)

 wlStatusLine (see wlStatusLine (property) on page 331)

 wlStatusNumber (see wlStatusNumber (property) on page 331)

 wlTables (see wlTables (object) on page 333)

 wlVersion (see wlVersion (property) on page 338)

 wlXmls (see wlXmls (object) on page 340)

ElapsedRoundTime (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

The minimum amount of time (in milliseconds) for the round to be played back. If the

total time it takes for the round to be played back is less than the time period specified,

the machine sleeps for the remainder of the time. This property must be set in

InitAgenda(). If it is set anywhere else, it is ignored.

The behavior of the sleep time is affected by the Sleep Time Control settings that are set

in the Current Project Options of the WebLOAD Recorder and Console. These settings

can be one of the following:

 80  Chapter 4. WebLOAD Actions, Objects, and Functions

 Sleep time as recorded (default for the Console) – Runs the script with the delays

corresponding to the natural pauses that occurred when recording the script.

 Ignore recorded sleep time (default for the WebLOAD Recorder) – Eliminates

any pauses when running the script and runs a worst-case stress test.

 Set random sleep time – Sets the ranges of delays to represent a range of users.

 Set sleep time deviation – Sets the percentage of deviation from the recorded

value to represent a range of users.

For more information on setting the Sleep Time Control settings, see Configuring Sleep

Time Control Options in the WebLOAD Recorder User’s Guide.

Example

function InitAgenda()

{

wlGlobals.ElapsedRoundTime = 1056

}

element (object)

Property of Object

element objects are grouped into collections of elements. The elements collection

is also a property of the following objects:

 form (see form (object) on page 95)

Description

Each element object stores the parsed data for a single HTML form element such as

<INPUT>, <BUTTON>, <TEXTAREA>, or <SELECT>. The full elements collection

stores all the controls found in a given form except for objects of input type=image.

(Compare to the form (see form (object) on page 95) object, which stores the parsed data

for an entire HTML form.)

element objects are local to a single thread. You cannot create new element objects

using the JavaScript new operator, but you can access HTML elements through the

properties and methods of the standard DOM objects. element properties are read-

only.

Syntax

element objects are organized into collections of elements. elements[0] refers to

the first child element, elements[1] refers to the second child element, etc. To access

an individual element’s properties, check the length property of the elements

collection and use an index number to access the individual elements. For example, to

JavaScript Reference Guide  81 

find out how many element objects are contained within forms[1], check the value

of:

document.forms[1].elements.length

You can access a member of the elements collection either by its index number or by

its HTML name attribute. For example, suppose that the first element of a form is

coded by the HTML tag.

<INPUT type=“text” name=“yourname”>

You can access this element by writing either of the following expressions:

document.forms[0].elements[0]

document.forms[0].elements[“yourname”]

document.forms[0].elements.yourname

document.forms[0].yourname

Example

Access each element’s properties directly using either of the following lines:

document.forms[0].elements[0].type

-Or-

document.forms[0].yourname.type

Properties

 checked (see checked (property) on page 48)

 cols (see cols (property) on page 54)

 defaultchecked (see defaultchecked (property) on page 71)

 defaultvalue (see defaultvalue (property) on page 72)

 InnerText (see InnerText (property) on page 156)

 Name (see Name (property) on page 174)

 id (see id (property) on page 146)

 InnerImage (see InnerImage (property) on page 155)

 InnerText (see InnerText (property) on page 156)

 MaxLength (see MaxLength (property) on page 170)

 option (see option (object) on page 185)

 OuterLink (see OuterLink (property) on page 186)

 row (see row (object) on page 223)

 selectedindex (see selectedindex (property) on page 235)

 Size (see Size (property) on page 247)

 title (see title (property) on page 284)

 82  Chapter 4. WebLOAD Actions, Objects, and Functions

 type (see type (property) on page 288)

 Url (see Url (property) on page 289)

 value (see value (property) on page 294)

Comment

The most frequently accessed input elements are of type Button, CheckBox, File,

Image, Password, Radio, Reset, Select, Submit, Text, and TextArea.

See also

 Collections (on page 27)

 Image (see Image (object) on page 149)

 Select (on page 230)

EncodeBinary (property)

The EncodeBinary property is identical to the EncodeRequestBinaryData property. For

additional information, see EncodeRequestBinaryData (property) on page 83.

EncodeFormdata (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Sets the wlGlobals.EncodeFormdata flag.

Generally, when an HTTP client (Microsoft Internet Explorer/Firefox or WebLOAD)

sends a post request to the server, the data must be HTTP encoded. Special characters

such as blanks, “>“ signs, and so on, are replaced by “%xx”. For example, a space is

encoded as “%20”.

Turn off the encoding when the script sends large requests that have no data that

needs to be encoded. This improves performance as it bypasses the scanning and

reformatting of the request buffer.

JavaScript Reference Guide  83 

GUI mode

In WebLOAD Console, select or deselect the Encode Form Data checkbox in the HTTP

Parameters tab of the Default or Current Session Options dialog box, accessed from

the Tools tab of the ribbon.

In WebLOAD Recorder, select or deselect the Encode Form Data checkbox in the

HTTP Parameters tab of the Default or Current Project Options dialog box, accessed

from the Tools tab of the ribbon.

Example

wlGlobals.EncodeFormData = true

See also

 HTTP Components (on page 24)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

EncodeRequestBinaryData (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

Used to specify if the binary data in requests should be encoded. The default value of

EncodeRequestBinaryData is false.

For example, if a mobile operator wants to simulate the sending of binary data from

the browser (phone) to the server. Part of the binary data is a value (for example,

phone number) that needs parameterization. When the EncodeRequestBinaryData flag

is set to true, the binary form data "x0Ax0BAMIRx00" appears as "%0A%0BAMIR%00"

in the script.

Example

wlGlobals.EncodeRequestBinaryData = true

GUI mode

In WebLOAD Recorder, check Encode Binary Data in the Script Generation tab of the

Recording and Script Generation Options dialog box, accessed from the Tools tab of

the ribbon.

 84  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 EncodeResponseBinaryData (see EncodeResponseBinaryData (property) on page 84)

 EncodeBinary (see EncodeBinary (property) on page 82)

 SaveSource (see SaveSource (property) on page 226)

EncodeResponseBinaryData (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

Indicates whether binary data sent in responses should be encoded.

EncodeResponseBinaryData can be used with web pages that have binary data sent in

responses and on which you would want to perform correlation on that binary data.

The default value of EncodeResponseBinaryData is false. When set to true, the

response will be encoded when the user accesses document.wlSource. The encoding is

performed on the original data, when it is accessed. Readable characters that are not

letters are not encoded. That is, "!@#$%^&*()" remains "!@#$%^&*()" and carriage return

and tab are translated to \r\t. The response is saved in document.wlSource only if the

SaveSource flag is set to true.

Example

wlGlobals.EncodeResponseBinaryData = true

See also

 EncodeRequestBinaryData (see EncodeRequestBinaryData (property) on page 83)

encoding (property)

Property of Object

 form (see form (object) on page 95)

Description

A read-only string that specifies the MIME encoding for the form.

See also

 form (see form (object) on page 95)

JavaScript Reference Guide  85 

EndTransaction() (function)

Description

Use the BeginTransaction() and EndTransaction() functions to define the start

and finish of a logical block of code that you wish to redefine as a single logical

transaction unit. This enables setting timers, verification tests, and other measurements

for this single logical unit.

Syntax

BeginTransaction(TransName)

…

<any valid JavaScript code>

…

[SetFailureReason(ReasonName)]

EndTransaction(TransName,Verification,[SaveFlag],[FailureReason])

Parameters

Parameter Name Description

TransName The name assigned to this transaction, a user-supplied string.

Verification A call to any verification function that returns one of the following

values: WLSuccess, WLMinorError, WLError, or

WLSevereError. If the verification function does not explicitly

return a value, the default value is always WLSuccess.

Verification may also be an expression, constant, or variable that

evaluates to one of the preceding return values. See

VerificationFunction() (user-defined) (see VerificationFunction()

(user-defined) (function) on page 297), for more information.

[SaveFlag] An optional Boolean flag specifying whether WebLOAD should

save the results of all transaction instances, successes and failures,

(true), for later analysis with Data Drilling, or should save only

results of failed transaction instances that triggered some sort of

error flag, (false, default).

[FailureReason] An optional user-supplied string that provides a reason for the

failure.

GUI mode

Note: BeginTransaction() and EndTransaction() functions are usually

accessed and inserted into script files directly through the WebLOAD Recorder. For

example, the following figure illustrates a section in the Script Tree bracketed by

BeginTransaction and EndTransaction nodes. The EndTransaction node is highlighted

in the Script Tree.

 86  Chapter 4. WebLOAD Actions, Objects, and Functions

Figure 9: Form Branch in Script Tree Bracketed by BeginTransaction and EndTransaction Nodes

To mark the end of a transaction, drag the End Transaction icon from the Load

toolbox into the Script Tree, directly after the last action you want included in the

script.

For additional information about the EndTransaction() function, refer to Begin and

End Transaction in the WebLOAD Recorder User’s Guide.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TransactionTime (see TransactionTime (property) on page 287)

 Transaction Verification Components (on page 36)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

JavaScript Reference Guide  87 

EnforceCharEncoding (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Indicates whether the parser should use the character set it parses in the HTML pages

or override it using the CharEncoding property. The default value is false (use the

encoding from the HTML pages).

The EnforceCharEncoding property can be set to one of the following values:

 true – Use the CharEncoding property.

 false (default) – Get the encoding from the HTML pages.

Example

wlGlobals.EnforceCharEncoding = false

GUI mode

In WebLOAD Console, check Enforce Character Encoding in the Browser Parameters

tab of the Default Options or Current Session Options dialog box, accessed from the

Tools tab of the ribbon.

In WebLOAD Recorder, check Enforce Character Encoding in the Browser Parameters

tab of the Default or Current Project Options dialog box, accessed from the Tools tab

of the ribbon.

See also

 CharEncoding (see CharEncoding (property) on page 47)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

 88  Chapter 4. WebLOAD Actions, Objects, and Functions

Erase (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Indicates whether or not to clear the WebLOAD properties of a wlHttp object after

each Get(), Post(), or Head() call. wlHttp.Erase is a read/write property. The

default value is true. This section briefly discusses the implications of each setting.

wlHttp.Erase=true (default)

When Erase is set to true, WebLOAD automatically erases all wlHttp property

values after each HTTP access. You must reassign any properties you need before the

next HTTP access. For this reason, assign the properties of wlHttp only in the main

script, not in InitClient(), so they will be reassigned in every round.

Thus if Erase is set to true the following script is incorrect. In this script, the wlHttp

properties are assigned values in InitClient(). The script would connect to the Url

and submit the FormData only in the first round. After the first Post() call, the Url

and FormData property values are erased, so WebLOAD cannot use them in

subsequent rounds.

function InitClient() { //Wrong!

wlHttp.Url = “http://www.ABCDEF.com/products.exe”

wlHttp.FormData[“Name”] = “John Smith”

wlHttp.FormData[“Product Interest”] = “Modems”

}

//Main script

wlHttp.Post()

To solve the problem, assign the wlHttp property values in the main script, so that the

assignments are executed before each Get(), Post(), or Head() call:

//Main script //OK

wlHttp.Url = “http://www.ABCDEF.com/products.exe”

wlHttp.FormData[“Name”] = “John Smith”

wlHttp.FormData[“Product Interest”] = “Modems”

wlHttp.Post()

Alternatively, you could assign values to wlLocals properties, which are not erased:

function InitClient() { //OK

wlLocals.Url = “http://www.ABCDEF.com/products.exe”

wlLocals.FormData[“Name”] = “John Smith”

wlLocals.FormData[“Product Interest”] = “Modems”

}

JavaScript Reference Guide  89 

//Main script

wlHttp.Post()

wlHttp.Erase=false

You may set Erase to false to prevent erasure. For example, if for some reason you

absolutely had to assign values to the wlHttp properties in the InitClient()

function of the script, change the value of the Erase property to false. If Erase is

false, the properties retain their values through subsequent rounds.

Thus another way to correct the preceding example is to write:

function InitClient() { //OK

wlHttp.Erase = false

wlHttp.Url =

 “http://www.ABCDEF.com/products.exe”

wlHttp.FormData[“Name”] = “John Smith”

wlHttp.FormData[“Product Interest”] = “Modems”

}

//Main script

wlHttp.Post()

User-defined properties are not linked to the wlHttp.Erase property and will not be

erased automatically by WebLOAD. The only way to reset or erase user-defined

properties is for the user to set the new values explicitly.

See also

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 DataCollection.type (see type (property) on page 288)

 DataCollection.value (see value (property) on page 294)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

 wlClear() (see wlClear() (method) on page 301)

 90  Chapter 4. WebLOAD Actions, Objects, and Functions

ErrorMessage() (function)

Description

Use this function to display an error message in the Log Window and abort the current

round.

Syntax

ErrorMessage(msg)

Parameters

Parameter Name Description

msg A string with an error message to be sent to the WebLOAD

Console.

Comment

If you call ErrorMessage() in the main script, WebLOAD stops the current round of

execution. Execution continues with the next round, at the beginning of the main

script.

You may also use the wlException object with the built-in try()/catch()

commands to catch errors within your script.

GUI mode

WebLOAD recommends adding message functions to your script files directly through

the WebLOAD Recorder. Message function commands can be added to the script in

Visual Editing mode using the Toolbox message item and the Insert menu command.

Message function command lines may also be added directly to the code in a

JavaScript Object within a script through the IntelliSense Editor, described in Using the

IntelliSense JavaScript Editor (on page 18).

See also

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

JavaScript Reference Guide  91 

 wlException (see wlException (object) on page 306)

 wlException() (see wlException() (constructor) on page 308)

ErrorMessage (property)

Property of Object

 wlVerification (see wlVerification (object) on page 337)

Description

ErrorMessage is used to define a global error message that appears in the Log

window when a verification fail error occurs. When defined, ErrorMessage affects all

the verifications in which an error message is not defined. If you define an error

message for a specific verification, it overrides the global error message defined in the

ErrorMessage property.

Example

To set the global error message displayed in the Log window in the event of any

verification fail errors to my personalized error message, write:

wlVerification.ErrorMessage = “my personalized error message”

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 PageTime (see PageTime (property) on page 190)

 Severity (see Severity (property) on page 247)

 Function (see Function (property) on page 100)

 Title (see Title (function) on page 285)

EvaluateScript() (function)

Description

Enables testers to include scripts and specify the point during script execution at which

the script should be executed.

Syntax

EvaluateScript(“Script”, RunModeConstant)

Parameters

 92  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameter Name Description

Script A valid JavaScript syntax, including function calls.

RunModeConstant One of the following list of constants that acts as a flag when

passed as a parameter to EvaluateScript(). Defines the point

during script execution at which WebLOAD should execute the

script being included here. Possible choices include:

 WLAfterInitAgenda

 WLBeforeInitClient

 WLBeforeThreadActivation

 WLOnThreadActivation

 WLBeforeRound

 WLAfterRound

 WLAfterTerminateClient

 WLAfterTerminateAgenda

Comment

If the script to be executed is in an external file, use the following:

IncludeFile(filename.js)

EvaluateScript(“MyFunction()”,WLAfterRound)

Where MyFunction() is defined in filename.js.

event (property)

Property of Objects

 link (see link (object) on page 162)

 script (see script (object) on page 228)

Description

Represents the event that occurred to the parent object or the event for which the script

is written.

ExecuteConcurrent() (function)

Description

Use the ExecuteConcurrent()function to define the point after which all Post and

Get HTTP requests, which have been collected since the DefineConcurrent()

function was run, are executed. At this point, the collected HTTP requests are executed

concurrently, by two or more threads. The number of threads is defined in the

JavaScript Reference Guide  93 

WebLOAD Console in the multithreading number in the Browser Parameters tab of the

Script Options dialog box.

Note: This function can only be inserted in your script after a DefineConcurrent()

function. For more information about the DefineConcurrent() function, see

DefineConcurrent() (function) (on page 72).

When the engine encounters the ExecuteConcurrent() function, it stops collecting

the HTTP requests in the script and starts their execution.

Example

DefineConcurrent()

…

<any valid JavaScript code, including Post and Get requests>

…

ExecuteConcurrent()

GUI mode

Note: The ExecuteConcurrent()function is usually inserted into script files directly

through the WebLOAD Recorder. Drag the Execute Concurrent icon, from the Load

toolbox, into the Script Tree at the desired location.

For additional information about the ExecuteConcurrent() function, refer to

Execute Concurrent in the WebLOAD Recorder User’s Guide.

See also

 DefineConcurrent() (see DefineConcurrent() (function) on page 72)

extractValue()(function)

Description

Use this function to extract a specific string contained within another string.

Syntax

retVarName = extractValue(prefix, suffix, str, instance)

Parameters

Parameter Name Description

retVarName A variable name that will be generated to the agenda

prefix A string indicating the beginning of the string to be extracted.

suffix A string indicating the end of the string to be extracted.

 94  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameter Name Description

str The string to be extracted is contained within this string.

instance When there is more than one appearance of the prefix string

following by the suffix string, this optional parameter can be used

to indicate the correct string to be returned. The default value is 1.

For example, when instance is 3, the third appearance of the

prefix string followed by the suffix string indicates the string to be

returned.

Return Value

The extractValue function returns the extracted string.

Example

The following function extracts ‘x’ out of ‘axb’:

retStr = extractValue(“a”, “b”, “axb”)

Since no instance parameter is specified, WebLOAD automatically adds the default

value of the instance parameter:

retStr = extractValue(“a”, “b”, “axb”,1)

The following function extracts ‘tttatt’ out of ‘zzzatttattbaxbzzzbzz’:

retStr = extractValue(“a”, “b”,“zzzatttattbaxbzzzbzz”,1)

The following function extracts ‘x’ out of ‘zzzatttattbaxbzzzbzz’:

retStr = extractValue(“a”, “b”,“zzzatttattbaxbzzzbzz”,2)

FileName (property)

Property of Object

 wlHttp.DataFile (see DataFile (property) on page 67)

Description

This property is a string that holds the name of the file being submitted through an

HTTP Post command.

Syntax

wlHttp.DataFile.FileName = “DataFileName”

See also

 Data (see Data (property) on page 66)

JavaScript Reference Guide  95 

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

 type (see type (property) on page 288)

 value (see value (property) on page 294)

 wlClear() (see wlClear() (method) on page 301)

 wlHttp (see wlHttp (object) on page 316)

FilterURL (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The value of the FilterURL property is a list of filters separated by semi-colons. When

retrieving a resource, the engine checks whether the value of any of these filters appear

in the URL. If the value of any of the filters appears in the URL, the URL is not

executed. Filtering is only performed during playback.

Example

For example, if FilterURL = “ynet;cnn.com”, the engine will filter URLs from

ynet.com and ynet.co.il, as well as URLS from cnn.com.

See also

 HTTP Components (on page 24)

 96  Chapter 4. WebLOAD Actions, Objects, and Functions

form (object)

Property of Object

form objects are grouped into collections of forms. The forms collection is a property

of the following object:

 document (see document (object) on page 78)

Description

Specifies that the contained controls are all elements of a form. Each form object stores

the parsed data for a complete HTML form (<FORM> tag). A form object contains the

complete set of elements and input controls (text, radio buttons, checkboxes, etc.) that

are all components of a single form. (Compare to the element (see element (object) on

page 80) object, which stores the parsed data for a single HTML form element.)

form objects are local to a single thread. You cannot create new form objects using the

JavaScript new operator, but you can access HTML forms through the properties and

methods of the standard DOM objects. form properties are read-only.

form objects are grouped together within collections of forms, as described in

Collections (see Collections on page 27). A forms collection contains all form links

(HTML <FORM> elements) within the document.

Syntax

The forms collection includes a length property that reports the number of form

objects within a document (read-only). To find out how many form objects are

contained within a document, check the value of:

document.forms.length

Use an index number to access an individual form’s properties. Access each form’s

properties directly using the following syntax:

document.forms[index#].<form-property>

You can also access a member of the forms collection by its HTML name attribute. For

example, suppose that the first form on an HTML page is introduced by the tag:

<FORM name=“SignUp”

 action=“http://www.ABCDEF.com/FormProcessor.exe”

 method=“post”>

You can access this form by writing any of the following expressions:

document.forms[0]

document.forms[“SignUp”]

document.forms.SignUp

document.SignUp

JavaScript Reference Guide  97 

Properties

 element (see element (object) on page 80)

 encoding (see encoding (property) on page 83)

 id (see id (property) on page 146)

 method (see method (property) on page 171)

 Name (see Name (property) on page 174)

 target (see target (property) on page 280)

 Url (see Url (property) on page 289)

See also

 Collections (on page 27)

 document (see document (object) on page 78)

 element (see element (object) on page 80)

 Image (see Image (object) on page 149)

 Select (on page 230)

FormData (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

A collection containing form field values. WebLOAD submits the field values to the

HTTP server when you call the Get(), Post(), or Head() method of the wlHttp

object. FormData goes through HTTP encoding before being sent to the server in the

same manner as content-type=application/x-www-form-urlencoded.

The collection indices are the field names (HTML name attributes). Before you call

wlHttp.Post(), set the value of each element to the data that you want to submit in

the HTML field. The fields can be any HTML controls, such as buttons, text areas, or

hidden controls.

Method

Use the wlClear() (see wlClear() (method) on page 301) method to delete specific

FormData fields or clear all the FormData fields at once.

 98  Chapter 4. WebLOAD Actions, Objects, and Functions

Comment

JavaScript supports two equivalent notations for named collection elements:

FormData.FirstName or FormData[“FirstName”]. The latter notation also

supports spaces in the name, for example, FormData[“First Name”].

Getting FormData using Get()

You can get form data using a Get() call. For example:

wlHttp.FormData[“FirstName”] = “Bill”

wlHttp.FormData[“LastName”] = “Smith”

wlHttp.FormData[“EmailAddress”] = “bsmith@ABCDEF.com”

wlHttp.Get(“http://www.ABCDEF.com/submit.cgi”)

WebLOAD appends the form data to the URL as a query statement, using the

following syntax:

http://www.ABCDEF.com/submit.cgi

 ?FirstName=Bill&LastName=Smith

 &EmailAddress=bsmith@ABCDEF.com

Submitting FormData using Post()

Suppose you are testing an HTML form that requires name and email address data.

You need to submit the form to the submit.cgi program, which processes the data.

You can code this in the following way:

wlHttp.FormData[“FirstName”] = “Bill”

wlHttp.FormData[“LastName”] = “Smith”

wlHttp.FormData[“EmailAddress”] = “bsmith@ABCDEF.com”

wlHttp.Post(“http://www.ABCDEF.com/submit.cgi”)

The Post() call connects to submit.cgi and sends the FormData fields. In the

above example, WebLOAD would post the following fields:

FirstName=Bill

LastName=Smith

EmailAddress=bsmith@ABCDEF.com

You may also submit FormData with missing fields or with data files.

See also

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 Get() (see Get() (transaction method) on page 104)

JavaScript Reference Guide  99 

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

 type (see type (property) on page 288)

 value (see value (property) on page 294)

 wlClear() (see wlClear() (method) on page 301)

frames (object)

Property of Object

 document (see document (object) on page 78)

Description

The frames object retrieves a collection of all window objects defined by the given

document or defined by the document associated with the given window. Each

window object contains one of the child windows found in a browser window

frameset. The frames collection stores the complete parse results for downloaded

HTML frames, including nested child windows. Use the frames properties to retrieve

information about any child windows to which the current window or document are

linked.

frames collections are local to a single thread. WebLOAD creates an independent

frames collection for each thread of a script. You cannot create new frames

collections using the JavaScript new operator, but you can access HTML frames

through the properties and methods of the standard DOM objects. frames properties

are read-only.

Syntax

The frames collection includes a length property that reports the number of frame

objects within a document (read-only). To find out how many window objects are

contained within a document, check the value of:

document.frames.length

Use an index number to access an individual frame’s properties. Access each window’s

properties directly using the following syntax:

document.frames[#].<child-property>

You can also access a member of the frames collection by its HTML name attribute.

For example:

document.frames[“namestring”]

-Or-

document.frames.namestring

 100  Chapter 4. WebLOAD Actions, Objects, and Functions

Comment

If the GetFrames property is false, the frames collection is empty.

Example

Access each window’s properties directly through an index number:

document.frames[1].location

Access the first child window using the following expression:

frames[0]

Access the first child window’s link objects directly using the following syntax:

frames[0].frames[0].links[#].<property>

For example:

document.frames[0].links[0].protocol

Properties

 id (see id (property) on page 146)

 Index (see Index (property) on page 152)

 Name (see Name (property) on page 174)

 title (see title (property) on page 284)

 Url (see Url (property) on page 289)

See also

 Collections (on page 27)

 GetFrames (see GetFrames (property) on page 117)

Function (property)

Property of Object

 wlVerification (see wlVerification (object) on page 337)

Description

Function is used to define a global JavaScript function called when a verification fail

error occurs. When defined, Function affects all the verifications in which a

JavaScript function is not defined. If you define a JavaScript function for a specific

verification, it overrides the global JavaScript function defined in the Function

property.

JavaScript Reference Guide  101 

Example

To set the global JavaScript function called in the event of any verification fail errors to

GetOperatingSystem(), write:

wlVerification.Function = GetOperatingSystem()

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 PageTime (see PageTime (property) on page 190)

 Severity (see Severity (property) on page 247)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

GeneratorName() (function)

Description

GeneratorName() provides a unique identification for the current Load Generator

instance, even with multiple spawned processes running simultaneously. The

identification string is composed of a combination of the current Load Generator name,

computer name, and other internal markers.

Syntax

GeneratorName()

Return Value

Returns a unique identification string for the current Load Generator.

GUI mode

WebLOAD recommends accessing global system variables, including the

GeneratorName() identification function through the WebLOAD Recorder. All the

variables that appear in this list are available for use at all times in a script file. In the

WebLOAD Recorder main window, click Variables Windows in the Debug tab of the

ribbon.

For example, it is convenient to add GeneratorName() to a Message Node to clarify

which Load Generator sent the messages that appear in the WebLOAD Console Log

window.

 102  Chapter 4. WebLOAD Actions, Objects, and Functions

Figure 10: Variables List in WebLOAD Recorder

See also

 ClientNum (see ClientNum (variable) on page 50)

 GetOperatingSystem() (see GetOperatingSystem() (function) on page 131)

 Identification Variables and Functions (on page 29)

 RoundNum (see RoundNum (variable) on page 222)

 VCUniqueID() (see VCUniqueID() (function) on page 296)

Get() (method)

Get() (addition method)

Method of Objects

 wlGeneratorGlobal (see wlGeneratorGlobal (object) on page 309)

 wlSystemGlobal (see wlSystemGlobal (object) on page 332)

Description

Returns the current value of the specified shared variable.

Syntax

Get(“SharedVarName”, ScopeFlag)

Parameters

Parameter Name Description

SharedVarName The name of a shared variable whose value should be returned.

JavaScript Reference Guide  103 

Parameter Name Description

ScopeFlag One of two flags, WLCurrentAgenda or WLAllAgendas,

signifying the scope of the shared variable.

When used as a method of the wlGeneratorGlobal object:

 The WLCurrentAgenda scope flag signifies variable values

that you wish to share between all threads of a single script,

part of a single process, running on a single Load Generator.

 The WLAllAgendas scope flag signifies variable values that

you wish to share between all threads of one or more scripts,

common to a single spawned process, running on a single

Load Generator.

When used as a method of the wlSystemGlobal object:

 The WLCurrentAgenda scope flag signifies variable values

that you wish to share between all threads of a single script,

potentially shared by multiple processes, running on multiple

Load Generators, system wide.

 The WLAllAgendas scope flag signifies variable values that

you wish to share between all threads of all scripts, run by all

processes, on all Load Generators, system-wide.

Return Value

Returns the current value of the specified shared variable.

Example

CurrentCount =

 wlGeneratorGlobal.Get(“MySharedCounter”, WLCurrentAgenda)

CurrentCount =

 wlSystemGlobal.Get(“MyGlobalCounter”, WLCurrentAgenda)

See also

 Add() (see Add() (method) on page 39)

 Set() (see Set() (addition method) on page 240)

Get() (cookie method)

Method of Objects

 location (see location (object) on page 168)

 wlCookie (see wlCookie (object) on page 302)

Description

Searches for the value of a specific cookie and returns it. If there is more than one

cookie with the same name, the method returns the first occurrence.

 104  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

wlCookie.Get(name[, domain][, path])

Parameters

Parameter Name Description

name A descriptive name identifying the cookie, for example,

“CUSTOMER”.

domain The top-level domain name of the cookie, for example,

“www.ABCDEF.com”.

path The top-level directory path, within the specified domain, of the

cookie, for example, “/”.

Return Value

Returns the value of the cookie found.

Example

retValue = wlCookie.Get(“CUSTOMER”, “www.ABCDEF.com”, “/”)

Get() (transaction method)

Method of Objects

This function is implemented as a method of the following object:

 wlHttp (see wlHttp (object) on page 316)

Description

Perform an HTTP or HTTPS Get command. The method gets the FormData, Data, or

DataFile properties in the Get command. In this way, you can get any type of data

from an HTTP server.

Syntax

Get([URL] [, TransName])

http://www.abcdef.com/

JavaScript Reference Guide  105 

Parameters

Parameter Name Description

[URL] An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the

method. Get() connects to the first URL that has been specified

from the following list, in the order specified:

 A Url parameter specified in the method call.

 The Url property of the wlHttp object.

 The local default wlLocals.Url.

 The global default wlGlobals.Url.

[TransName] An optional user-supplied string with the transaction name as it

will appear in the Statistics Report.

Use named transactions to identify specific HTTP transactions by

name. This simplifies assigning counters when you want

WebLOAD to automatically calculate a specific transaction’s

occurrence, success, and failure rates.

The run-time statistics for transactions to which you have

assigned a name appear in the Statistics Report. For your

convenience, WebLOAD offers an Automatic Transaction option.

In the WebLOAD Console, select Automatic Transaction from the

General Tab of the Global Options dialog box. Automatic

Transaction is set to true by default. With Automatic

Transaction, WebLOAD automatically assigns a name to every

Get and Post HTTP transaction. This makes statistical analysis

simpler, since all HTTP transaction activity is measured, recorded,

and reported for you automatically. You do not have to remember

to add naming instructions to each Get and Post command in your

script. The name assigned by WebLOAD is simply the URL used

by that Get or Post transaction. If your script includes multiple

transactions to the same URL, the information will be collected

cumulatively for those transactions.

Example

function InitAgenda() {

//Set the default URL

wlGlobals.Url = “http://www.ABCDEF.com”

}

//Main script

//Connect to the default URL:

wlHttp.Get()

 106  Chapter 4. WebLOAD Actions, Objects, and Functions

//Connect to a different, explicitly set URL:

wlHttp.Get(“http://www.ABCDEF.com/product_info.html”)

//Assign a name to the following HTTP transaction:

url= http://www.ABCDEF.com/product_info.html

wlHttp.Get(url,

 “UpdateBankAccount”)

Use named transactions as a shortcut in place of the

BeginTransaction()...EndTransaction() module. For example, this is one

way to identify a logical transaction unit:

BeginTransaction(“UpdateBankAccount”)

wlHttp.Get(url)

 // the body of the transaction

 // any valid JavaScript statements

wlHttp.Post(url);

EndTransaction(“UpdateBankAccount”)

 // and so on

Using the named transaction syntax, you could write:

wlHttp.Get(url,”UpdateBankAccount”)

// the body of the transaction

// any valid JavaScript statements

wlHttp.Post(url,”UpdateBankAccount”)

 // and so on

For the HTTPS protocol, include “https://” in the URL and set the required

properties of the wlGlobals object:

wlHttp.Get(“https://www.ABCDEF.com”)

Comment

You may not use the TransName parameter by itself. Get() expects to receive either

no parameters, in which case it uses the script’s default URL, or one parameter, which

must be an alternate URL value, or two parameters, including both a URL value and

the transaction name to be assigned to this transaction.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Delete() (see Delete() (HTTP method)) on page 74

http://www.abcdef.com/product_info.html

JavaScript Reference Guide  107 

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Head() (see Head() (method) on page 139)

 Header (see Header (property) on page 140)

 Options() (see Options() (method) on page 186)

 Post() (see Post() (method) on page 205)

 Put() (see Put() (method) onpage 213)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

GetApplets (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of Java Applets in an HTML page. The default value of

GetApplets is true.

Note: This property can only be inserted manually.

Example

wlGlobals.GetApplets = true

See also

 GetCss() (see GetCss (property) on page 108)

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetFrames() (see GetFrames (property) on page 117)

 GetImages() (see GetImages (property) on page 121)

 GetOthers() (see GetOthers (property) on page 131)

 GetScripts() (see GetScripts (property) on page 134)

 108  Chapter 4. WebLOAD Actions, Objects, and Functions

 GetXml() (see GetXml() (property) on page 138)

GetCss (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of cascading style sheets in an HTML page. The default value of

GetCss is true.

Note: This property can only be inserted manually.

Example

wlGlobals.GetCss = true

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetFrames() (see GetFrames (property) on page 117)

 GetImages() (see GetImages (property) on page 121)

 GetOthers() (see GetOthers (property) on page 131)

 GetScripts() (see GetScripts (property) on page 134)

 GetXml() (see GetXml() (property) on page 138)

GetElementById() (function)

Description

Used to retrieve the element with the specified identification value by querying the

DOM of the HTML from the last response.

Syntax

GetElementById(“id”)

JavaScript Reference Guide  109 

Parameters

Parameter Name Description

id The identification value of the element to retrieve, enclosed in

quotation marks.

Return Value

The first element with the requested identification value or Null if no element was

found.

See also

 GetElementByName() (see GetElementByName() (function) on page 110)

 GetElementsById() (see GetElementsById() (function) on page 109)

GetElementsById() (function)

Description

Used to retrieve an array of all elements with the specified identification value by

querying the DOM of the HTML from the last response.

Note: An element can be from the document.forms[].elements[],

document.links[] or document.images[] collections.

Syntax

GetElementsById(“id”)

Parameters

Parameter Name Description

id The identification value of the elements to retrieve, enclosed in

quotation marks.

Return Value

A list of the requested elements.

Example

wlHttp.Get("www.abc.com")

var elementArr = GetElementsById("id4");

for (var i in elementArr) {

var elm = elementArr[i];

InfoMessage("ID:" + elm.id + ", Name:" + elm.name + ", Type:" +

elm.type + ", Value:" + elm.value);

}

The expected output is:

 110  Chapter 4. WebLOAD Actions, Objects, and Functions

4.11 ID:id4, Name:event, Type:hidden, Value:search

4.23 ID:id4, Name:process, Type:hidden, Value:login

See also

 GetElementsByName() (see GetElementsByName() (function) on page 110)

 GetElementById() (see GetElementById() (function) on page 108)

GetElementByName() (function)

Description

Used to retrieve the element with the specified name by querying the DOM of the

HTML from the last response.

Note: An element can be from the document.forms[].elements[], document.links[] or

document.images[] collections.

Syntax

GetElementByName(“name”)

Parameters

Parameter Name Description

name The name of the element to retrieve, enclosed in quotation marks.

Return Value

The first element with the requested name or Null if no element was found.

See also

 GetElementsByName() (see GetElementsByName() (function) on page 110)

 GetElementById() (see GetElementById() (function) on page 108)

GetElementsByName() (function)

Description

Used to retrieve an array of all elements with the specified name by querying the DOM

of the HTML from the last response.

Note: An element can be from the document.forms[].elements[], document.links[] or

document.images[] collections.

Syntax

GetElementsByName(“name”)

JavaScript Reference Guide  111 

Parameters

Parameter Name Description

name The name of the elements to retrieve, enclosed in quotation marks.

Return Value

A list of the requested elements.

Example

wlHttp.Get("http://www.webloadmpstore.com/login.php")

var elementArr = GetElementsByName("event");

for (var i in elementArr) {

var elm = elementArr[i];

InfoMessage("Name:" + elm.name + ", ID:" + elm.id + ", Type:" +

elm.type + ", Value:" + elm.value);

}

The expected output is:

4.11 Name:event, ID:, Type:hidden, Value:search

4.23 Name:event, ID:, Type:hidden, Value:login

See also

 GetElementByName() (see GetElementByName() (function) on page 110)

 GetElementsById() (see GetElementsById() (function) on page 109)

GetElementValueById() (function)

Description

Used to retrieve the value of the element with the specified identification value by

querying the DOM of the HTML from the last response.

Note: An element can be from the document.forms[].elements[], document.links[] or

document.images[] collections.

Syntax

GetElementValueById(“id”)

Parameters

Parameter Name Description

id The identification value of the element, enclosed in quotation marks.

 112  Chapter 4. WebLOAD Actions, Objects, and Functions

Return Value

The value of the first element with the requested identification value or Null if no

element was found.

Example

GetElementValueById(“sessionid”)

See also

 GetElementValueByName() (see GetElementValueByName() (function) on page 112)

GetElementValueByName() (function)

Description

Used to retrieve the value of the element with the specified name by querying the

DOM of the HTML from the last response.

Note: An element can be from the document.forms[].elements[], document.links[] or

document.images[] collections.

Syntax

GetElementValueByName(“name”)

Parameters

Parameter Name Description

name The name of the element, enclosed in quotation marks.

Return Value

The value of the first element with the requested name or Null if no element was

found.

Example

wlHttp.Get("http://www.webloadmpstore.com/login.php")

var elementArr = GetElementValueByName("event");

for (var i in elementArr) {

var elm = elementArr[i];

InfoMessage("Name:" + elm.name + ", ID:" + elm.id + ", Type:" +

elm.type + ", Value:" + elm.value);

}

See also

 GetElementValueById() (see GetElementValueById() (function) on page 111)

JavaScript Reference Guide  113 

GetEmbeds (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of embedded objects in an HTML page. The default value of

GetEmbeds is true.

Note: This property can only be inserted manually.

Example

wlGlobals.GetEmbeds = true

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetCss() (see GetCss (property) on page 108)

 GetFrames() (see GetFrames (property) on page 117)

 GetImages() (see GetImages (property) on page 121)

 GetOthers() (see GetOthers (property) on page 131)

 GetScripts() (see GetScripts (property) on page 134)

 GetXml() (see GetXml() (property) on page 138)

GetFieldValue() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the HTML value attribute (initial value) of a form field, given its name

attribute.

Syntax

GetFieldValue(FieldName [, frame])

 114  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameters

Parameter Name Description

FieldName The name of the field whose value is to be retrieved.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested value of the specified field.

Example

ClientFirstName = wlHtml.GetFieldValue(“FirstName”)

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method only searches within the specified frame and all its nested frames.

GetFieldValueInForm() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the HTML value attribute (initial value) of a form field, given its name

attribute. This method is similar to GetFieldValue(), but the search is limited to a

specific form within a specific frame.

Syntax

GetFieldValueInForm(FormIndex, FieldName [, frame])

Parameters

Parameter Name Description

FormIndex Index number that identifies the specific form to which the search

is to be limited.

FieldName The name of the field whose value is to be retrieved.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested HTML value attribute of the form field.

JavaScript Reference Guide  115 

Example

If an HTML page includes two frames with a form in the second frame.

wlHtml.GetFieldValueInForm(0, “FirstName”, Frame1)

searches the first form in Frame1 and returns “Bill”.

Comment

The method does not search within nested frames. Omit the optional frame parameter

if the HTML page does not contain frames.

GetFormAction() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve a form object, representing a <FORM> element. The action attribute specifies

the URL where the form data is to be submitted.

Syntax

GetFormAction(FormIndex [, frame])

Parameters

Parameter Name Description

FormIndex Index number that identifies the specific form to which the search

is to be limited.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested form object.

Example

If an HTML page includes two frames with a form in the second frame

wlHtml.GetFormAction(0, Frame1)

returns a form object for the form.

Comment

The method does not search within nested frames. Omit the optional frame parameter

if the HTML page does not contain frames.

 116  Chapter 4. WebLOAD Actions, Objects, and Functions

GetFrameByUrl() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve a frame object given its URL.

Syntax

GetFrameByUrl(UrlPattern [, frame])

Parameters

Parameter Name Description

UrlPattern The URL for the frame requested.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested frame.

Example

//Retrieve Frame0

Frame0 = wlHtml.GetFrameByUrl(“http://MyCompany/Frame0.html”)

//Retrieve Frame0.1

Frame0_1 = wlHtml.GetFrameByUrl(“http://MyCompany/Frame0B.html”)

You may use * as a wildcard character in the URL. The method returns the first frame

matching the search pattern. For example:

// To match URL (http://MyCompany/Frame0B.html)

Frame0_1 = wlHtml.GetFrameByUrl(“*B.htm*”)

You may narrow the search to frames nested within a specific parent frame by

specifying the optional frame parameter. For example:

//Search within Frame0 and retrieve Frame0.0

Frame0_0 = wlHtml.GetFrameByUrl(“*/MyCompany/*”,Frame0)

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

Comment out GetFrames=false when you use the GetFrameByUrl method.

JavaScript Reference Guide  117 

GetFrames (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of Frames and IFrames in an HTML page. The default value of

GetFrames is true.

Note: This property can only be inserted manually.

Note: Although the default value for GetFrames is true, during recording, the

following is automatically inserted in the script:
wlGlobals.GetFrames=false;

Example

wlGlobals.GetFrames = true

Comments

When GetMetas is true, GetFrames should also be true as the redirection is retrieved as

a frame (see GetMetas (property) on page 130).

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetCss() (see GetCss (property) on page 108)

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetImages() (see GetImages (property) on page 121)

 GetOthers() (see GetOthers (property) on page 131)

 GetScripts() (see GetScripts (property) on page 134)

 GetXml() (see GetXml() (property) on page 138)

GetFrameUrl() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

 118  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

Retrieve a location object representing the URL of an HTML page. Optionally,

specify a nested frame.

Syntax

GetFrameUrl([frame])

Parameters

Parameter Name Description

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Comment

Comment out GetFrames=false when you use the GetFrameByUrl method.

Return Value

The requested location object.

Comment

This method is equivalent to the location property of a frame object (see frames (object)

on page 99).

GetHeaderValue() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the value of an HTTP header field.

Syntax

GetHeaderValue(HeaderName [, frame])

Parameters

Parameter Name Description

HeaderName The name of the header whose value is to be retrieved.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested HTTP header field value.

JavaScript Reference Guide  119 

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetHeaderValue(“Host”)

returns “Server2.MyCompany.com”.

-Or-

document.wlHeaders[“host”]

document.frame[0].wlHeaders[“host”]

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetHost() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the host of a URL, including the port number.

Syntax

GetHost([frame])

Parameters

Parameter Name Description

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested host information.

 120  Chapter 4. WebLOAD Actions, Objects, and Functions

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetHost()

returns “Server2.MyCompany.com:80”.

-Or-

document.wlHeaders[“hostname”]

document.frame[0].wlHeaders[“hostname”]

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetHostName() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the host name of a URL, not including the port number.

Syntax

GetHostName([frame])

Parameters

Parameter Name Description

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

Return Value

The requested host name.

JavaScript Reference Guide  121 

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetHostName()

returns “Server2.MyCompany.com”.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetImages (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of images in an HTML page. The default value of GetImages is

true.

When GetImages is false, the load engine does not retrieve the images from an HTML

page.

Note: This property can only be inserted manually.

Example

wlGlobals.GetImages = true

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetCss() (see GetCss (property) on page 108)

 122  Chapter 4. WebLOAD Actions, Objects, and Functions

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetFrames() (see GetFrames (property) on page 117)

 GetOthers() (see GetOthers (property) on page 131)

 GetScripts() (see GetScripts (property) on page 134)

 GetXml() (see GetXml() (property) on page 138)

GetImagesInThinClient (property)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

When set to true, the “Thin” client will retrieve images. The default value of

GetImagesInThinClient is false.

Note: This property can only be inserted manually.

Example

wlGlobals.GetImagesInThinClient = true

See also

 SetClientType (see SetClientType (function) on page 242)

 Collections (on page 27)

 document (see document (object) on page 78)

 Header (see Header (property) on page 140)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

GetIPAddress() (method)

Method of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

JavaScript Reference Guide  123 

Description

Returns the identity of the current IP address.

Syntax

GetIPAddress()

Return Value

Returns a string with the IP address for the current Virtual Client.

Example

...

wlHttp.MultiIPSupport = true

CurrentIPAddress = wlHttp.GetIPAddress()

wlHttp.Get()

...

Comment

Requesting the identity of the current IP address is only meaningful if your script is

handling more than one IP address. GetIPAddress() therefore can only return a

value if MultiIPSupport=true. If MultiIPSupport is turned off this method will

return “Undefined”.

The scope of MultiIPSupport depends, of course, on whether it was set through

wlGlobals, wlLocals, or wlHttp. For example, if your script sets

wlGlobals.MultiIPSupport, then GetIPAddress() returns a value at any point

in the script. If you set only wlHttp.MultiIPSupport, then

GetIPAddress()returns a value only if called before the next immediate HTTP

transaction.

See also

 HTTP Components (on page 24)

GetLine() (function)

Description

The GetLine() function reads and parses data from an ASCII file. The function reads

the file one line at a time in the following way:

 If you opened the file using the default sequential mode (see Open() (function) on

page 183), then:

 The first GetLine() call in any thread of a Load Generator reads the first line

of the file.

 124  Chapter 4. WebLOAD Actions, Objects, and Functions

 Each successive call in any thread of any process of the Load Generator (across

the master and slave processes of a single Load Generator/script combination)

reads the next line of the file.

 When the last line of the file has been read, the next access loops back to the

first line of the file.

 If you opened the file for random access (see Open() (function) on page 183), each

successive call in any thread of any process of the Load Generator (across the

master and slave processes of a single Load Generator/script combination) reads

some randomly selected line of the file. To read the input file lines in random

order, you must include Open(filename, WLRandom) in the script’s

InitAgenda() function.

In this way, a relatively small file can supply an unending stream of test data, and

different clients are supplied with different sequences of data.

Note: The last line of the file should not include a carriage return.

Syntax

GetLine(filename[, delimiter])

Parameters

Parameter Name Description

filename A string with the name of the file being read. May optionally

include the full directory path.

[delimiter] Optional character separating fields in one line of the input file.

Default delimiter character is a comma.

Return Value

The GetLine function returns an array containing both the full lines and the

individual tokens. The array (called LineArray in this example) includes the

following elements:

 LineArray[0]-the complete line. For example:

“John,Smith, jsmith@ABC.com”

 LineArray[1]-the first token. In this example:

“John”

 LineArray[2]-the second token. In this example:

“Smith”

 LineArray[3]-the third token. In this example:

“jsmith@ABC.com”

 LineArray.RoundNum-number of rounds through the file (including the current

round). For example: 4

 LineArray.LineNum-the number of the line that was just read. For example: 1

JavaScript Reference Guide  125 

Example

To read and parse the next line of the mydata.txt ASCII input file, in this case

including a directory path:

LineArray = GetLine(“c:\\temp\\mydata.txt”)

To specify a different delimiter:

LineArray = GetLine(“c:\\temp\\mydata.txt”, “:”)

Comment

JavaScript requires that you double the backslash in strings. If your directory path

includes the backslash character, remember to double the backslashes, as in the

preceding example.

If the line found in the file contains no separator characters, then the entire line is

considered to be a single token. In that case, the function returns a two-element array

(LineArray[0] and LineArray[1]), each containing the entire line.

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 File Management Functions (on page 28)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile (see wlOutputFile() (constructor) on page 324)

 wlOutputFile() (see wlOutputFile (object) on page 323)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

GetLine() (method)

Method of Object

 wlInputFile (see wlInputFile (object) on page 317)

 126  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

The GetLine() function reads and parses data from an ASCII file. The function reads

the file one line at a time in the following way:

 If you opened the file using the default WLFileSequential access method (see

Open() (method) on page 180), then:

 The first GetLine() call in any thread of a Load Generator reads the first line

of the file.

 Each successive call in any thread of any process of any Load Generator reads

the next line of the file.

 When the last line of the file has been read, the next access loops back to the

first line of the file.

 If you opened the file using the WLFileSequentialUnique access method (see

Open() (method) on page 180), then the procedure is basically as when using the

WLFileSequential access mode, except that the if the value/row is being used by

another VC, it is not retrieved, but skipped.

 If you opened the file using the WLFileRandom access method (see Open() (method)

on page 180), GetLine() reads a random value/row from the file, where there

might be multiple access to the same line by different Load Generator machines.

 If you opened the file using the WLFileRandomUnique access method (see Open()

(method) on page 180), GetLine() reads a unique, unused value/row randomly

from the file.

Note: The last line of the file should not include a carriage return.

Syntax

strInputFileLine = myFileObj.getLine(delimiter)

Parameters

Parameter Name Description

delimiter Optional character separating fields in one line of the input file.

Default delimiter character is a comma.

Return Value

The GetLine function returns an array containing both the full lines and the

individual tokens. The array (called strInputFileLine in this example) includes the

following elements:

 strInputFileLine [0]-the complete line. For example:

“John,Smith, jsmith@ABC.com”

 strInputFileLine [1]-the first token. In this example:

“John”

JavaScript Reference Guide  127 

 strInputFileLine [2]-the second token. In this example:

“Smith”

 strInputFileLine [3]-the third token. In this example:

“jsmith@ABC.com”

 strInputFileLine.LineNum-the number of the line that was just read.

For example: 1

Example

To read and parse the next line of the ASCII input file specified in myFileObj:

strInputFileLine = GetLine(“,”)

Comment

If the line found in the file contains no separator characters, then the entire line is

considered to be a single token. In that case, the function returns a two-element array

(strInputFileLine[0] and strInputFileLine[1]), each containing the entire

line.

See also

 File Management Functions (on page 28)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlInputFile (see wlInputFile() (constructor) on page 318)

GetLinkByName() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve a location object representing a link, given the hypertext display.

Syntax

GetLinkByName(Hypertext [, frame])

Parameters

Parameter Name Description

Hypertext The hypertext displayed in the desired link.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

 128  Chapter 4. WebLOAD Actions, Objects, and Functions

Return Value

The requested location object.

Example

Suppose the HTML on a page contains:

Product information

In this example,

wlHtml.GetLinkByName(“Product information”)

returns a location object for http://MyCompany/link1.html.

The search is case sensitive. You may use the * wildcard character in the Hypertext

string. For example,

wlHtml.GetLinkByName(“*roduct info*”)

also returns an object for http://MyCompany/link1.html.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetLinkByUrl() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve a location object representing a link, given part of the URL string.

Syntax

GetLinkByUrl(UrlPattern [, frame])

Parameters

Parameter Name Description

UrlPattern The URL of the desired link. Use the * wildcard character to

represent the missing parts.

[frame] An optional frame specification, used to limit the scope of the

search to a specific frame.

JavaScript Reference Guide  129 

Return Value

The requested location object.

Example

Suppose the HTML on a page contains:

Product information

In this example,

wlHtml.GetLinkByUrl(“*link1.htm*”)

returns a location object for http://MyCompany/link1.html.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetMessage() (method)

Method of Object

 wlException (see wlException (object) on page 306)

Description

Returns the message string text stored in this object.

Syntax

wlExceptionObject.GetMessage()

Return Value

Text string of the error message for this object.

Example

MeaningfulErrorMessage = myExceptionObject.GetMessage()

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 130  Chapter 4. WebLOAD Actions, Objects, and Functions

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

 wlException (see wlException (object) on page 306)

GetMetas (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

The GetMetas property, when set to true, enables the support of redirection for

non-recorded scripts, for websites using the HTML META tag (for example,

www.ynet.co.il).

Note: Since scripts that were recorded automatically include the redirected URL, the

GetMetas property should be used only in scripts that were written manually and

that contain a URL with meta direction.

Example

wlGlobals.GetMetas = false

Comments

 Because the redirection is retrieved as a frame, the GetFrames property must be

set to true (see GetFrames (property) on page 117).

 The additional wlHttp.GET will not be part of the script (it will be like frame 0).

 The desired page will be requested only on playback.

 The page will not be visible in WebLOAD Recorder’s Browser View. This is

because redirection will not be performed (the document will not be replaced).

WebLOAD implements the redirected URL by adding a frame to the parent

HTML. That is, the first page will be added with an extra frame containing the

redirection URL (fully parsed and all the objects in it will be get).

JavaScript Reference Guide  131 

GetOperatingSystem() (function)

Description

Returns a string identifying the operating system running on the current Load

Generator.

Syntax

GetOperatingSystem()

Return Value

Returns the name of the operating system running on the current Load Generator in

the format of the operating system name followed by some version identification.

For example, if the Load Generator is working with a Solaris platform, this function

would return the string ‘Solaris’ followed by the version name and release number,

such as SunOS2.

If the Load Generator is working with a Linux platform, this function would return the

string ‘Linux’ followed by the version name and release number, such as RedHat1.

If the Load Generator is working with a Windows platform, possible return values

include:

 Windows 95

 Windows 98

 Windows NT/2000 (ServicePack#)

 Windows XP

 Windows (for any other Windows version)

See also

 ClientNum (see ClientNum (variable) on page 50)

 GeneratorName() (see GeneratorName() (function) on page 101)

 Identification Variables and Functions (on page 29)

 RoundNum (see RoundNum (variable) on page 222)

 VCUniqueID() (see VCUniqueID() (function) on page 296)

GetOthers (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 132  Chapter 4. WebLOAD Actions, Objects, and Functions

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of objects not covered by the other Get methods in an HTML

page. The default value of GetOthers is true.

Note: This property can only be inserted manually.

Example

wlGlobals.GetOthers = true

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetCss() (see GetCss (property) on page 108)

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetFrames() (see GetFrames (property) on page 117)

 GetImages() (see GetImages (property) on page 121)

 GetScripts() (see GetScripts (property) on page 134)

 GetXml() (see GetXml() (property) on page 138)

GetPortNum() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the port number of the current URL.

Syntax

GetPortNum([frame])

Parameters

Parameter Name Description

[frame] An optional frame specification, used to retrieve the port of a

specific frame.

Return Value

The requested number.

JavaScript Reference Guide  133 

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetPortNum() would return a value such as 80.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetQSFieldValue() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the value of a search attribute in a URL. The search attributes are the fields

following the ? symbol, appended to the end of a URL.

Syntax

GetQSFieldValue(Url, FieldName)

Parameters

Parameter Name Description

Url The complete URL string to be parsed and searched.

FieldName The name of the field whose value is to be retrieved.

Return Value

The requested value.

 134  Chapter 4. WebLOAD Actions, Objects, and Functions

Example

The following search string:

wlHtml.GetQSFieldValue(“http://www.ABCDEF.com/query.exe” +

 “?SearchFor=icebergs&SearchType=ExactTerm”,”SearchFor”)

returns “icebergs”.

GetScripts (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of external JavaScript scripts in an HTML page. The default value

of GetScripts is true.

Note: This property can only be inserted manually.

Example

wlGlobals.GetScripts = true

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetCss() (see GetCss (property) on page 108)

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetFrames() (see GetFrames (property) on page 117)

 GetImages() (see GetImages (property) on page 121)

 GetOthers() (see GetOthers (property) on page 131)

 GetXml() (see GetXml() (property) on page 138)

GetSeverity() (method)

Method of Object

 wlException (see wlException (object) on page 306)

JavaScript Reference Guide  135 

Description

Returns the severity level value stored in this object.

Syntax

wlExceptionObject.GetSeverity()

Return Value

Integer, representing one of the following error level values:

 WLError-this specific transaction failed and the current test round was aborted.

The script displays an error message in the Log window and begins a new round.

 WLSevereError-this specific transaction failed and the test session must be

stopped completely. The script displays an error message in the Log window and

the Load Generator on which the error occurred is stopped.

Example

SeverityLevel = myExceptionObject.GetSeverity()

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetMessage() (see GetMessage() (method) on page 129)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

 wlException() (see wlException() (constructor) on page 308)

GetStatusLine() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the status string from the HTTP header.

Syntax

GetStatusLine([frame])

 136  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameters

Parameter Name Description

[frame] An optional frame specification, used to retrieve the status string

of a specific frame.

Return Value

The requested status string.

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetStatusLine() would return “OK”.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetStatusNumber() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the status code from the HTTP header.

Syntax

GetStatusNumber([frame])

JavaScript Reference Guide  137 

Parameters

Parameter Name Description

[frame] An optional frame specification, used to retrieve the status code of

a specific frame.

Return Value

The requested status number.

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetStatusNumber() would return 200.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetUri() (method)

Method of Object

 wlHtml (see wlHtml (object) on page 315)

Description

Retrieve the URI part of a URL. The URI is the portion of the address following the

host name.

Syntax

GetUri([frame])

 138  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameters

Parameter Name Description

[frame] An optional frame specification, used to retrieve the URI of a

specific frame.

Return Value

The requested URI string.

Example

For the following HTTP Header example:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com:80

wlHtml.GetUri() would return “WebPage.html”.

Comment

By default, the method searches in all frames of the parse tree and returns the first

match. You may narrow the search by specifying an optional frame parameter. In that

case, the method searches within the specified frame and all its nested frames.

If you are specifying a frame, comment out GetFrames=false.

GetXML (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables the retrieval of external XML in an HTML page. The default value of GetXML

is true.

Note: This property can only be inserted manually.

JavaScript Reference Guide  139 

Example

wlGlobals.GetXML = true

See also

 GetApplets() (see GetApplets (property) on page 107)

 GetCss() (see GetCss (property) on page 108)

 GetEmbeds() (see GetEmbeds (property) on page 113)

 GetFrames() (see GetFrames (property) on page 117)

 GetImages() (see GetImages (property) on page 121)

 GetOthers() (see GetOthers (property) on page 131)

 GetScripts() (see GetScripts (property) on page 134)

hash (property)

Property of Object

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The HTML anchor portion of the URL, not including the # initial symbol (read-only

string).

Example

Given the following HTML fragment:

<A href=“http://www.ABCDEF.com/search.exe?

 SearchFor=modems&SearchType=ExactTerm”>

links[0].hash is “modems”.

Head() (method)

Method of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Perform an HTTP or HTTPS Head command.

 140  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

Head()

Comment

This method operates in the same way as Get(), but it retrieves only the HTTP or

HTTPS header from the server. It does not download the body of the URL, such as a

Web page.

See also

 HTTP Components (on page 24)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Post() (see Post() (method) on page 205)

 wlGlobals (see wlGlobals (object) on page 313)

 wlLocals (see wlLocals (object) on page 319)

Header (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

A collection of HTTP header fields that you want to send in a Get(), Post(), or

Head() call.

Example

By default, WebLOAD sends the following header in any HTTP command:

host: <host>

user-agent: Radview/HttpLoader 1.0

accept: */*

Here, <host> is the host name to which you are connecting, for example:

www.ABCDEF.com:81.

You may reset these properties, for example, as follows:

wlHttp.UserAgent = “Mozilla/4.03 [en] (WinNT; I)”

JavaScript Reference Guide  141 

Alternatively, you can use the Header property to override one of the default header

fields. For example, you can redefine the following header field:

wlHttp.Header[“user-agent”] = “Mozilla/4.03 [en] (WinNT; I)”

GUI mode

WebLOAD offers a simple way to reset configuration properties using the various tabs

of the Default Options dialog box, accessed from the Tools tab of the ribbon. Resetting

configuration properties as you run and rerun various testing scenarios enables you to

fine tune your tests to match your exact needs at that moment. For example, you can

reset the user-agent value through the Browser Parameters tab.

Comment

Use the wlClear() (see wlClear() (method) on page 301) method to delete specific Header

fields or clear all the Header fields at once.

You cannot override the host header or set a cookie header using the Header property.

To set a cookie, see wlCookie (see wlCookie (object) on page 302)

Use the wlHttp.Header property to change or reset specific individual values

immediately before executing the next wlHttp GET/POST request.

Any information set using the wlHttp.Header property takes priority over any

defaults set through the GUI (recommended) or using the wlGlobals, wlLocals, or

wlHttp properties. If there is any discrepancy between the document header

information and the HTTP values, WebLOAD will work with the information found in

the wlHttp.Header property while also issuing a warning to the user.

See also

 HTTP Components (on page 24)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Post() (see Post() (method) on page 205)

 type (see type (property) on page 288)

 UserAgent (see UserAgent (property) on page 291)

 value (see value (property) on page 294)

 wlClear() (see wlClear() (method) on page 301)

 142  Chapter 4. WebLOAD Actions, Objects, and Functions

 wlGlobals (see wlGlobals (object) on page 313)

 wlLocals (see wlLocals (object) on page 319)

host (property)

Property of Object

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The host portion of the URL, including both the host name and the port (read-only

string).

Example

Given the following HTML fragment:

<A href=“http://www.ABCDEF.com/search.exe?

 SearchFor=modems&SearchType=ExactTerm”>

links[0].host is “www.ABCDEF.com:80”

hostname (property)

Property of Object

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The host name portion of the URL (read-only string).

Example

Given the following HTML fragment:

<A href=“http://www.ABCDEF.com/search.exe?

 SearchFor=modems&SearchType=ExactTerm”>

links[0].hostname is “www.ABCDEF.com”

JavaScript Reference Guide  143 

href (property)

Property of Object

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The complete URL of the link (read-only string).

Example

Given the following HTML fragment:

<A href=“http://www.ABCDEF.com/search.exe?

 SearchFor=modems&SearchType=ExactTerm”>

links[0].href is
“https://www.ABCDEF.com/products/order.html#modems”

Comment

The href property contains the entire URL. The other link properties contain

portions of the URL. links[#].href is the default property for the link object. For

example, if

links[0]=‘http://microsoft.com’

then the following two URL specifications are equivalent:

mylink=links[0].href

and

mylink=links[0]

HttpCacheScope (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Defines when the Http cache will be cleared. Possible values are:

 None – Defines that all Virtual Clients simulate a browser with no available cache.

 144  Chapter 4. WebLOAD Actions, Objects, and Functions

 SingleCommand – Defines that cache be cleared after each request.

 SingleCommandIfModified – Defines that WebLOAD will check for a newer

version of the cached item with every request. Whenever the engine has a request

for a cached resource, the engine sends the request with an “if-modified-since”

header. If the server responds with a 200 status, the engine will refresh the cache.

 SingleRound – Defines that cache be cleared after each script execution round.

This is the default value for the HttpCacheScope property.

 WholeRun – Defines that the cache will never be cleared. Each client maintains its

own cache.

 WholeRunIfModified – Defines that WebLOAD will check for a newer version of

the cached item after each round. Whenever the engine has a request for a cached

resource, the engine sends the request with an “if-modified-since” header. If the

server responds with a 200 status, the engine will refresh the cache.

Example

wlGlobals.HttpCacheScope = “SingleCommand”

GUI mode

In the WebLOAD Recorder, select one of the cache scope options in the Browser Cache

tab of the Default/Current Project Options dialog box, accessed from the Tools tab of

the ribbon.

Note: The default value for the cache scope is SingleRound.

See also

 HttpCacheCachedTypes (see HttpCacheCachedTypes (property) on page 144)

HttpCacheCachedTypes (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Specifies the type of content to include in the HTTP cache: None, HTML, JS, CSS, XML,

Applet, Image, Dynamic (a URL with a query string). The default value is JS, CSS,

XML, Applet, Image.

Example

wlGlobals.HttpCacheCachedTypes = “Image,CSS”

JavaScript Reference Guide  145 

GUI mode

For wlGlobals.HttpCacheCachedTypes, you can also set the Cache Content Filter from

WebLOAD Recorder or Console.

In WebLOAD Recorder, in the Browser Cache tab of the Default or Current Options

dialog box, select either the Default or User Filter in the Cache Content Filter area. If

you select User Filter, check the relevant filters.

In WebLOAD Console, in the Browser Cache tab of the Default or Current Options

dialog box or the Script Options dialog box, select either the Default or User Filter in

the Cache Content Filter area. If you select User Filter, check the relevant filters.

See also

 HttpCacheScope (see HttpCacheScope (property) on page 143)

httpEquiv (property)

Property of Object

 wlMetas (see wlMetas (object) on page 320)

Description

Retrieves the value of the HTTP-EQUIV attribute of the META tag (read-only string).

Syntax

wlMetas[index#].httpEquiv

Example

document.wlMetas[0].httpEquiv

See also

 content (see content (property) on page 56)

 Name (see Name (property) on page 174)

 Url (see Url (property) on page 289)

HttpsProxy, HttpsProxyUserName,

HttpsProxyPassWord (properties)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 146  Chapter 4. WebLOAD Actions, Objects, and Functions

 wlLocals (see wlLocals (object) on page 319)

Description

Identifies the proxy server that the script uses for HTTP SSL access when

UseSameProxyforSSL is set to false. The user name and password are for SSL proxy

servers that require user authorization. These properties are used when you are

working with a separate SSL proxy.

Note: This property can only be inserted manually.

Syntax

wlGlobals.httpsProxyProperty = “TextString”

Example

wlGlobals.httpsProxy = “proxy.ABCDEF.com:8080”

wlGlobals.httpsProxyUserName = “Bill”

wlGlobals.httpsProxyPassWord = “Classified”

See also

 HTTP Components (on page 24)

 Security in the WebLOAD Scripting Guide

 Proxy, ProxyUserName, ProxyPassWord (see Proxy, ProxyUserName,

ProxyPassWord (properties) on page 210)

 ProxyNTUserName, ProxyNTPassWord (see ProxyNTUserName, ProxyNTPassWord

(properties) on page 212)

 HttpsProxyNTUserName, HttpsProxyNTPassWord (see HttpsProxyNTUserName,

HttpsProxyNTPassWord (properties) on page 146)

 UseSameProxyForSSL (see UseSameProxyForSSL (property) on page 292)

HttpsProxyNTUserName, HttpsProxyNTPassWord

(properties)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Provides user authorization to the proxy server that the script uses for HTTP SSL

access on Windows servers when UseSameProxyforSSL is set to false.

JavaScript Reference Guide  147 

Syntax

wlGlobals.httpsProxyNTProperty = “TextString”

Example

wlGlobals.httpsProxyNTUserName = “Bill”

wlGlobals.httpsProxyNTPassWord = “Classified”

See also

 HTTP Components (on page 24)

 Security in the WebLOAD Scripting Guide

 HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord (see HttpsProxy,

HttpsProxyUserName, HttpsProxyPassWord (properties) on page 146)

 Proxy, ProxyUserName, ProxyPassWord (see Proxy, ProxyUserName,

ProxyPassWord (properties) on page 210)

 ProxyNTUserName, ProxyNTPassWord (see ProxyNTUserName, ProxyNTPassWord

(properties) on page 212)

 UseSameProxyForSSL (see UseSameProxyForSSL (property) on page 292)

id (property)

Property of Objects

 element (see element (object) on page 80)

 form (see form (object) on page 95)

 frames (see frames (object) on page 99)

 Image (see Image (object) on page 149)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

 script (see script (object) on page 228)

 Select (on page 230)

 wlTables (see wlTables (object) on page 333)

 wlXmls (see wlXmls (object) on page 340)

Description

Retrieves the string identifying the parent object. The ID value is taken from the ID

attribute within the tag. This property is optional. If this object does not have an ID

attribute then the value is undefined.

 148  Chapter 4. WebLOAD Actions, Objects, and Functions

When working with element, forms, frames, image, or map objects, returns a string

containing an alternative identification means for the complete image, map, forms or

frame or for elements of type Button, CheckBox, File, Image, Password, Radio, Reset,

Select, Submit, Text, and TextArea.

Example

wlTables example:

If the first table on a page is assigned the ID tag myTable, access the table using any of

the following:

document.wlTables[0]

-Or-

document.wlTables.myTable

-Or-

document.wlTables[myTable]

If duplicate identifiers are found, the id property will refer to the first wlTables

object found with that identifier.

wlXmls example:

If the first XML object on a page is assigned the ID tag myXmlDoc, access the object

using any of the following:

MyBookstore = document.wlXmls[0]

-Or-

MyBookstore = document.wlXmls.myXmlDoc

-Or-

MyBookstore = document.wlXmls[“myXmlDoc”]

If duplicate identifiers are found, the id property will refer to the first XML object

found with that identifier.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

JavaScript Reference Guide  149 

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 load() (see load() (method) on page 163)

 loadXML() (see loadXML() (method) on page 167)

 load() and loadXML() Method Comparison (on page 164)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 src (see src (property) on page 252)

 tagName (see tagName (property) on page 279) (cell property)

 Working with HTTP Protocol in the WebLOAD Scripting Guide

 XMLDocument (see XMLDocument (property) on page 345)

Image (object)

Property of Objects

Image objects on a Web page are accessed through the document.all collection of

the standard DOM structure.

Description

Each Image object represents one of the images or video clips embedded in a

document (HTML element). Image objects are accessed through Images

Collections (on page 27). (Compare to the element (see element (object) on page 80) object,

which stores the parsed data for a single HTML form element, where the element may

be any one of a variety of types, and the form (see form (object) on page 95) object,

which stores the parsed data for an entire HTML form.)

image objects are grouped together within collections of images, accessed directly

through the document object (document.images[#]).

 150  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

To find out how many image objects are contained within a document, check the

value of:

document.images.length

Access each image’s properties directly using the following syntax:

document.images[index#].<image-property>

Example

document.images[1].src

Properties

 id (see id (property) on page 146)

 InnerLink (see InnerLink (property) on page 155)

 Name (see Name (property) on page 174)

 OuterLink (see OuterLink (property) on page 186)

 protocol (see protocol (property) on page 210)

 src (see src (property) on page 252)

 Url (see Url (property) on page 289)

See also

 Collections (on page 27)

 form (see form (object) on page 95)

 Select (on page 230)

IncludeFile() (function)

Description

Instructs WebLOAD to include the specified file, and optionally execute scripts that are

stored within that file, as part of the initialization process before beginning the main

script execution rounds. Encourages modular programming by enabling easy access to

sets of library function files.

Syntax

IncludeFile(filename[, WLExecuteScript])

JavaScript Reference Guide  151 

Parameters

Parameter Name Description

filename A string or variable containing the full literal name of the file to be

included. WebLOAD assumes that the file is located in the default

directory specified in the File Locations tab (User Include Files

entry) in the Tools  Global Options dialog box in the

WebLOAD Console or in the Tools  Settings dialog box in the

WebLOAD Recorder. For additional information about the

included file’s location, refer to Determining the Included File

Location in the WebLOAD Scripting Guide. Once the file is found,

any functions or variables defined within that file are compiled

and included within the calling script when the script is compiled.

WLExecuteScript WLExecuteScript is a global constant that acts as a flag when

passed as a parameter to IncludeFile(). WLExecuteScript is

an optional parameter. When included, WebLOAD will not only

compile the definitions found in the specified file. WebLOAD will

also execute any additional commands or functions found within

that file outside the included function definitions. With

WLExecuteScript , WebLOAD enables work with self-

initializing include files that can define, set, and execute the

commands necessary to initialize a work environment at compile

time.

Example

To include the external file MyFunction.js, located on the WebLOAD Console

during WebLOAD testing, use the following command:

function InitAgenda() {

 IncludeFile(“MyFunction.js”)

}

Comment

The IncludeFile command must be inserted in the InitAgenda() section of your

JavaScript program.

The load engine first looks for the file to be included in the default User Include Files

directory. If the file is not there, the file request is handed over to WebLOAD, which

searches for the file using the following search path order:

1. If a full path name has been hardcoded into the IncludeFile command, the system

searches the specified location. If the file is not found in an explicitly coded

directory, the system returns an error code of File Not Found and will not search in

any other locations.

Note: It is not recommended to hardcode a full path name, since the script will then

not be portable between different systems. This is especially important for networks

that use both UNIX and Windows systems.

 152  Chapter 4. WebLOAD Actions, Objects, and Functions

2. Assuming no hardcoded full path name in the script code, the system looks for the

file in the current working directory, the directory from which WebLOAD was

originally executed.

3. Finally, if the file is still not found, the system searches for the file sequentially

through all the directories listed in the File Locations tab.

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile (see wlOutputFile (object) on page 323)

 wlOutputFile() (see wlOutputFile (object) on page 323)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

Index (property)

Property of Objects

 frames (see frames (object) on page 99)

Description

Sets or retrieves the index number of the parent object. For example, the ordinal

position of an option in a list box.

See also

 Collections (on page 27)

JavaScript Reference Guide  153 

InfoMessage() (function)

Description

Displays a generally informative (but not necessarily problematic) message in the Log

Window.

Syntax

InfoMessage(msg)

Parameters

Parameter Name Description

msg A string with an informative message to be sent to the WebLOAD

Console.

Comment

If you call InfoMessage() in the main script, WebLOAD sends an informative

message to the Log window and continues with script execution as usual. The message

has no impact on the continued execution of the WebLOAD test.

GUI mode

WebLOAD recommends adding message functions to your script files directly through

the WebLOAD Recorder. Message function command lines may also be added directly

to the code in a JavaScript Object within a script through the IntelliSense Editor,

described in Using the IntelliSense JavaScript Editor (on page 18).

See also

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 Message Functions (on page 30)

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

 wlException (see wlException (object) on page 306)

 wlException() (see wlException() (constructor) on page 308)

 154  Chapter 4. WebLOAD Actions, Objects, and Functions

InnerHTML (property)

Property of Objects

 cell (see cell (object) on page 44)

 script (see script (object) on page 228)

 wlXmls (see wlXmls (object) on page 340)

Description

Sets or retrieves the HTML found between the start and end tags of the object.

Syntax

When working with cell objects, use the uppercase form:

…cells[2].InnerHTML

When working with script or wlXmls objects, use the lowercase form:

…scripts[2].innerHTML

Comment

The InnerHTML property for cell objects is written in uppercase.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerImage (see InnerImage (property) on page 155)

 InnerText (see InnerText (property) on page 156) (cell property)

 load() (see load() (method) on page 163)

 loadXML() (see loadXML() (method) on page 167)

 load() and loadXML() Method Comparison (on page 164)

 MatchBy (see MatchBy (property) on page 170)

JavaScript Reference Guide  155 

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 src (see src (property) on page 252)

 tagName (see tagName (property) on page 279) (cell property)

 wlTables (see wlTables (object) on page 333)

 XMLDocument (see XMLDocument (property) on page 345)

InnerImage (property)

Property of Object

 element (see element (object) on page 80)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

Sets or retrieves the image found between the <Start> and <End> tags of the object.

When working with a button object, the image that appears on the button. When

working with a link or location object, the image that appears over the link.

When working with a TableCell object, the image that appears over a table cell.

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 InnerText (see InnerText (property) on page 156)

 src (see src (property) on page 252)

InnerLink (property)

Property of Objects

 Image (see Image (object) on page 149)

Description

Represents the inner link field for the parent image object.

 156  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 Collections (on page 27)

 form (see form (object) on page 95)

 Select (on page 230)

InnerText (property)

Property of Object

 cell (see cell (object) on page 44)

 element (see element (object) on page 80)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

Sets or retrieves only the text found between the <Start> and <End> tags of the object.

When working with a Button element object, the text that appears on the button.

When working with a link or location object, the text that appears over the link.

When working with a TableCell object, the text that appears over a table cell.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 element (see element (object) on page 80)

 id (see id (property) on page 146) (wlTables and wlXmls property)

 InnerHTML (see InnerHTML (property) on page 154) (cell and wlXmls property)

 InnerImage (see InnerImage (property) on page 155)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

 MatchBy (see MatchBy (property) on page 170)

JavaScript Reference Guide  157 

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 src (see src (property) on page 252)

 tagName (see tagName (property) on page 279) (cell property)

 wlTables (see wlTables (object) on page 333)

JVMType (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The JVMType property indicates the JVM to be used in the Load Generator. The value

of this property is defined using the WebLOAD Console or WebLOAD Recorder and

overrides the JVM definition in webload.ini.

The value (string) of this property is the key for WLJVMs.xml. This file (located on

every WebLOAD Machine in the <WebLOAD Installation

Directory>\extensions\JVMs directory) contains the following parameters for

each JVM:

 Type (the value from the flag)

 Path (should be machine-agnostic)

 Options

When Type is "Default", the RadView default (installed) JVM will be used. The default

JVM’s path is defined in webload.ini, as it depends on the WebLOAD installation

path.

Note: The classpath definitions are defined in webload.ini.

GUI mode

In WebLOAD Console, select a JVM from the Select run-time JVM to be used drop-

down list in the Java Options tab of the Current Session Options dialog box, accessed

from the Tools tab of the ribbon.

 158  Chapter 4. WebLOAD Actions, Objects, and Functions

In WebLOAD Recorder, select a JVM from the Select run-time JVM to be used drop-

down list in the Java Options tab of the Default or Current Project Options dialog box,

accessed from the Tools tab of the ribbon.

KDCServer (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

Description

Specifies the address of the Key Distribution Center (KDC) server if you are using the

Kerberos authentication method.

Note: The KDCServer property is only relevant for playback.

Syntax

KDCServer(ServerName)

Parameters

Parameter Name Description

ServerName The name of the KDC server if you are using the Kerberos

authentication method.

Example

wlGlobals.KDCServer = “qa4”

GUI mode

To specify the name of the KDC server if you are using the Kerberos authentication

method:

 In WebLOAD Console, select the Kerberos radio button and enter the address of

the KDC server in the Kerberos Server field in the Authentication tab of the

Default, Current Session, or Script Options dialog box, accessed from the Tools

tab of the ribbon.

 In WebLOAD Recorder, select the Kerberos radio button and enter the address of

the KDC server in the Kerberos Server field in the Authentication tab of the

Default or Current Project Options dialog box, accessed from the Tools tab of the

ribbon.

Comment

Only the server name should be specified in KDCServer. For example, specify “qa4”

rather than “qa4.radview.co.il”.

JavaScript Reference Guide  159 

See also

 AuthType (see AuthType (property) on page 40)

KeepAlive (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enable WebLOAD to keep an HTTP connection alive between successive accesses in

the same round of the main script. The possible values are:

 false – Do not keep an HTTP connection alive.

 true – Keep the connection alive if the server permits.

(default)

Keeping a connection alive saves time between accesses. WebLOAD attempts to keep

the connection alive unless you switch to a different server. However, some HTTP

servers may refuse to keep a connection alive.

Use the wlHttp.CloseConnection() method to explicitly close a connection that

you have kept alive. Otherwise, the connection is automatically closed at the end of

each round.

Comment

You should not keep a connection alive if establishing the connection is part of the

performance test.

GUI mode

WebLOAD recommends maintaining or closing connections through the WebLOAD

Console. Enable maintaining connections for the Load Generator or for the Probing

Client during a test session by checking the appropriate box in the Browser Parameters

tab of the Default Options dialog box, accessed from the Tools tab of the ribbon.

See also

 HTTP Components (on page 24)

 CloseConnection() (see CloseConnection() (method) on page 53)

 Rules of Scope for Local and Global Variables in the WebLOAD Scripting Guide

 160  Chapter 4. WebLOAD Actions, Objects, and Functions

 Working with HTTP Protocol in the WebLOAD Scripting Guide

KeepRedirectionHeaders (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

Used to indicate whether to get the location headers of all redirections. The default

value of KeepRedirectionHeaders is false.

Example

wlGlobals.KeepRedirectionHeaders = true

Comment

This property is useful for the following scenario, which occurs in correlation. During a

redirection, in the middle of one of the URLs, there is a parameter in the Location

header that is needed for the next Get. Since only the headers of the last Get in a series

of redirections are stored in document.wlHeaders, the KeepRedirectionHeaders

property, when set to true, enables all the headers in a series of redirections to be

saved. The value can be extracted from document.wlHeaders after the navigation is

complete.

See also

 SaveHeaders (see SaveHeaders (property) on page 225)

key (property)

Property of Objects

 Header (see Header (property) on page 140)

 wlHeaders (see wlHeaders (object) on page 314)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

Description

The search key name (read-only).

JavaScript Reference Guide  161 

Syntax

For wlHeaders:

document.wlHeaders[index#].key = “TextString”

For wlSearchPairs:

document.links[1].wlSearchPairs[index#].key = “TextString”

For wlHttp.Header:

wlHttp.Header[“key”] = “TextString”

Example

For wlHeaders:

document.wlHeaders[0].key = “Server”

For wlSearchPairs:

document.links[1].wlSearchPairs[0].key = “Server”

For wlHttp.Header:

wlHttp.Header[“key”] = “Server”

See also

 value (see value (property) on page 294)

language (property)

Property of Object

 script (see script (object) on page 228)

Description

Retrieves the language in which the current script is written.

Example

“javascript” specifies that the script is written in JavaScript.

“vbscript” specifies that the script is written in Visual Basic Script.

 162  Chapter 4. WebLOAD Actions, Objects, and Functions

link (object)

Property of Objects

Links on a Web page are accessed through link objects that are grouped into

collections of links. The links collection is a property of the document object.

Description

A link object contains information on an external document to which the current

document is linked. Each link object points to one of the URL links (HTML <A>

elements) within the document. Each link object stores the parsed data for the HTML

link (<A> element).

link objects are local to a single thread. You cannot create new link objects using the

JavaScript new operator, but you can access HTML links through the properties and

methods of the standard DOM objects. link properties are read-only.

link objects are organized into Collections (see Collections on page 27) of links or

anchors. To access an individual link’s properties, check the length property of the

links collection and use an index number to access the individual links.

Syntax

To find out how many link objects are contained within a document, check the value

of:

document.links.length

Access each link’s properties directly using the following syntax:

document.links[#].<link-property>

Example

document.links[1].protocol

Properties

 hash (see hash (property) on page 139)

 host (see host (property) on page 142)

 hostname (see hostname (property) on page 142)

 href (see href (property) on page 143)

 id (see id (property) on page 146)

 InnerImage (see InnerImage (property) on page 155)

 InnerText (see InnerText (property) on page 156)

 Name (see Name (property) on page 174)

 pathname (see pathname (property) on page 204)

JavaScript Reference Guide  163 

 port (see port (property) on page 204)

 protocol (see protocol (property) on page 210)

 search (see search (property) on page 229)

 target (see target (property) on page 280)

 title (see title (property) on page 284)

 Url (see Url (property) on page 289)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

See also

 Collections (on page 27)

 document (see document (object) on page 78)

load() (method)

Method of Objects

XML DOM objects on a Web page are accessed through collections of wlXmls objects.

The load() function is a method of the following object:

 wlXmls (see wlXmls (object) on page 340)

Description

Call load(URL) to download XML documents from a website and automatically load

these documents into XML DOM objects.

Do not include any external references when using load().

load() relies on the MSXML parser to performs any HTTP transactions needed to

download the XML document. The MSXML module accesses external servers and

completes all necessary transactions without any control or even knowledge on the

part of the WebLOAD system tester. From WebLOAD’s perspective, these transactions

are never performed in the context of the test session. For this reason, any settings that

the user enters through the WebLOAD script or Console will not be relayed to the

MSXML module and will have no effect on the document ‘load’. For the same reason,

the results of any transactions completed this way will not be included in the

WebLOAD statistics reports.

Syntax

load(URLString)

 164  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameters

Parameter Name Description

URLString String parameter with the URL or filename where the XML

document may be found.

Example

myXMLDoc = document.wlXmls[0]

myXMLdoc.load(“http://server/xmls/file.xml”)

Comment

You may use load() repeatedly to load and reload XML data into XML DOM objects.

Remember that each new ‘load’ into an XML DOM object will overwrite any earlier

data stored in that object.

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 loadXML() (see loadXML() (method) on page 167)

 load() and loadXML() Method Comparison (on page 164)

 src (see src (property) on page 252)

 XMLDocument (see XMLDocument (property) on page 345)

load() and loadXML() Method Comparison

Description

WebLOAD supports both the load() and the loadXML() methods to provide the

user with maximum flexibility. The following table summarizes the advantages and

disadvantages of each method:

Table 5: load() and loadxml() Comparison

Advantages Disadvantages

loadXML() Parameters that the user

has defined through

WebLOAD for the testing

session will be applied to

this transaction.

The method fails if the DTD section of the

XML document string includes any

external references.

JavaScript Reference Guide  165 

Advantages Disadvantages

load() The user may load XML

files that include external

references in the DTD

section.

Parameters that the user has defined

through WebLOAD for the testing session

will not be applied to this transaction.

WebLOAD does not record the HTTP Get

operation.

The transaction results are not included in

the session statistics report.

Using this method may adversely affect

the test session results.

Comment

If you wish to measure the time it took to load the XML document using the load()

method, create a timer whose results will appear in the WebLOAD statistics. For

example:

myXMLDoc = document.wlXmls[0]

SetTimer(“GetXMLTime”)

myXMLdoc.load(“http://server/xmls/file.xml”)

SendTimer(“GetXMLTime”)

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 load() (see load() (method) on page 163)

 loadXML() (see loadXML() (method) on page 167)

 src (see src (property) on page 252)

 wlXmls (see wlXmls (object) on page 340)

 XMLDocument (see XMLDocument (property) on page 345)

LoadGeneratorThreads (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

 166  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

Optionally, WebLOAD can allocate extra threads to download nested images and

frames.

For clients that you define in a Load Generator, this option is controlled by the

LoadGeneratorThreads property. The default value of this property is Single,

which means that Virtual Clients will not use extra threads to download data from the

Server.

For the Probing Client, the option is controlled by the ProbingClientThreads

property. The default is Multiple, which means that the client can use three extra

threads for nested downloads. This simulates the behavior of Web browsers, which

often use extra threads to download nested images and frames.

The possible values of these properties are:

 Single – Do not use extra threads to download nested images and frames. (default

for LoadGeneratorThreads)

 Multiple – Allocate three extra threads per client (for a total of four threads per

client) to download nested images and frames (default for

ProbingClientThreads).

 Any specific number of threads between 1 and 8, such as “5” – Allocate that exact

number of extra threads per client to download nested images and frames.

Example

You can assign any of these properties independently within a single script. In that

case, if you configure a Probing Client to run the script, WebLOAD uses the value of

ProbingClientThreads and ignores LoadGeneratorThreads (vice versa if you

configure a Load Generator to run the script). For example, you might write:

function InitAgenda() {

//Do not use extra threads if a

// Probing Client runs the script

wlGlobals.ProbingClientThreads = “Single”

//Use extra threads if a

// Load Generator runs the script

wlGlobals.LoadGeneratorThreads = “Multiple”

}

Comment

The extra threads have no effect on the ClientNum value of the client. The

ClientNum variable reports only the main thread number of each client, not the extra

threads.

JavaScript Reference Guide  167 

GUI mode

WebLOAD recommends enabling or disabling multi-threaded virtual clients through

the WebLOAD Console. Enable multi-threading for the Load Generator or for the

Probing Client during a test session by checking the appropriate box in the Browser

Parameters tab of the Default or Current Session Options dialog box and setting the

number of threads you prefer.

See also

 HTTP Components (on page 24)

 ProbingClientThreads (see ProbingClientThreads (property) on page 208)

 Rules of Scope for Local and Global Variables in the WebLOAD Scripting Guide

loadXML() (method)

Method of Object

XML DOM objects on a Web page are accessed through collections of wlXmls objects.

The loadXML() function is a method of the following objects:

 wlXmls (see wlXmls (object) on page 340)

Description

Call loadXML(XMLDocString) to load XML documents into XML DOM objects. This

allows users to work with XML documents and data that did not originate in HTML

Data Islands, such as with Native Browsing. In a typical scenario, a user downloads an

XML document. WebLOAD saves the document contents in string form. The string is

then used as the parameter for loadXML(). The information is loaded automatically

into an XML object.

Note: Creating a new, blank XML DOM object with WLXmlDocument() and then

loading it with a parsed XML string using loadXML() is essentially equivalent to

creating a new XML DOM object and loading it immediately using

WLXmlDocument(xmlStr). As with the WLXmlDocument(xmlStr) constructor,

only standalone, self-contained DTD strings may be used for the loadXML()

parameter. External references in the DTD section are not allowed.

Syntax

loadXML(XMLDocStr)

Parameters

Parameter Name Description

XMLDocStr String parameter that contains a literal XML document in string

format.

 168  Chapter 4. WebLOAD Actions, Objects, and Functions

Example

//create a new XML document object

NewXMLObj = new WLXmlDocument()

wlHttp.SaveSource = true

wlHttp.Get(“http://www.server.com/xmls/doc.xml”)

XMLDocStr = document.wlSource

//load the new object with XML data

//from the saved source. We are assuming

//no external references, as explained above

NewXMLObj.loadXML(XMLDocStr)

Comment

You may use loadXML() repeatedly to load and reload XML data into XML DOM

objects. Remember that each new ‘load’ into an XML DOM object will overwrite any

earlier data stored in that object.

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 load() (see load() (method) on page 163)

 load() and loadXML() Method Comparison (on page 164)

 src (see src (property) on page 252)

 XMLDocument (see XMLDocument (property) on page 345)

location (object)

Property of Objects

 document (see document (object) on page 78)

Description

A location object stores the parsed URL and location data of the frame or root window.

For an overview of parsing, see Parsing Web pages in the WebLOAD Scripting Guide.

location objects are local to a single thread. You cannot create new location

objects using the JavaScript new operator, but you can access HTML locations through

the properties and methods of the standard DOM objects. The properties of location

are read-only.

JavaScript Reference Guide  169 

Syntax

Access the location’s properties directly using the following syntax:

document.location.<location-property>

Properties

Note: The properties of location are identical to those of link. The only exception is

that location has no target property. Also, the location object is not part of any

collection. The location properties are listed below for reference.

 hash (see hash (property) on page 139)

 host (see host (property) on page 142)

 hostname (see hostname (property) on page 142)

 href (see href (property) on page 143)

 id (see id (property) on page 146)

 InnerText (see InnerText (property) on page 156)

 Name (see Name (property) on page 174)

 pathname (see pathname (property) on page 204)

 port (see port (property) on page 204)

 protocol (see protocol (property) on page 210)

 search (see search (property) on page 229)

 title (see title (property) on page 284)

 Url (see Url (property) on page 289)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

Comment

The href property contains the entire URL. The other location properties contain

portions of the URL. location.href is the default property for the location object.

For example, if

location=‘http://microsoft.com’

then the following two URL specifications are equivalent:

mylocation=location.href

-Or-

mylocation=location

See also

 link (see link (object) on page 162)

 170  Chapter 4. WebLOAD Actions, Objects, and Functions

MaxLength (property)

Property of Object

 element (see element (object) on page 80)

Description

The maximum number of characters the user can enter into a Text or Password

element.

MaxPageTime (function)

Description

Verifies the PageTime of the service response. If the PageTime (time to download the

page) exceeds the specified maximum value, the verification fails.

Syntax

wlVerification.MaxPageTime(timeLimit, severity)

Parameters

Parameter Name Description

timeLimit The maximum amount of time to download the page in seconds.

severity Possible values of this parameter are:

 WLSuccess. The transaction terminated successfully.

 WLMinorError. This specific transaction failed, but the test

session may continue as usual. The script displays a warning

message in the Log window and continues execution from the

next statement.

 WLError. This specific transaction failed and the current test

round was aborted. The script displays an error message in

the Log window and begins a new round.

 WLSevereError. This specific transaction failed and the test

session must be stopped completely. The script displays an

error message in the Log window and the Load Generator on

which the error occurred is stopped.

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 Severity (see Severity (property) on page 247)

JavaScript Reference Guide  171 

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

method (property)

Property of Object

 form (see form (object) on page 95)

Description

Specifies the method that the browser should use to send the form data to the server

(read-only string). A value of “Get” will append the arguments to the action URL and

open it as if it were an anchor. A value of “Post” will send the data through an HTTP

Post transaction. The default is “Post”.

MultiIPSupport (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

WebLOAD enables use of all available IP addresses. This allows testers to simulate

clients with different IP addresses using only one Load Generator. You must first

generate additional IP addresses on your machine to use when testing and then set the

MultiIPSupport property to true to enable multiple IP support. For more

information about generating additional IP addresses, see Generating IP Addresses in the

script in the WebLOAD Scripting Guide.

Note: Setting the MultiIPSupport property to true without generating additional IP

addresses on your machine will not enable multiple IP support.

The possible values of wlGlobals.MultiIPSupport are:

 false – Use only one IP address. (default)

 true – Use all available IP addresses.

When connecting Load Generators through a modem, MultiIPSupport should be set

to false.

 172  Chapter 4. WebLOAD Actions, Objects, and Functions

Probing Clients use only one IP address. Load Generators are set by default to use only

one IP address, but may be set to use multiple IP addresses through the

MultiIPSupport property.

GUI mode

In WebLOAD Console, check or uncheck Multi IP Support in the HTTP Parameters

tab of the Default or Current Session Options dialog box, accessed from the Tools tab

of the ribbon.

In WebLOAD Recorder, check or uncheck Multi IP Support in the HTTP Parameters

tab of the Default or Current Project Options dialog box, accessed from the Tools tab

of the ribbon.

Comment

When the Load Generator has more than one IP address (one or more addresses on a

network interface card or one or more network interface cards) WebLOAD uses ALL of

the available IP addresses. Before setting MultiIPSupport to true, make sure that

all of the Applications Being Tested to which the script refers are accessible through all

the network interface cards.

Use the GetIPAddress() (see GetIPAddress() (method) on page 122) method to check the

identity of the current IP address.

See also

 HTTP Components (on page 24)

 GetIPAddress() (see GetIPAddress() (method) on page 122)

 Rules of Scope for Local and Global Variables in the WebLOAD Scripting Guide

 MultiIPSupportType() (see MultiIPSupportType (property) on page 172)

MultiIPSupportType (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The MultiIPSupportType property works with the wlGlobals.MultiIPSupport

property, and supports the following values:

JavaScript Reference Guide  173 

 PerClient (default) – Preserves the current behavior. This means that there are

different IPs per client but the same IP is used for all rounds.

 PerRound – Supports the use of a different IP from the pool per client, per round,

until the pool is exhausted, after which it returns to the beginning.

This property is only referenced when wlGlobals.MultiIPSupport is true.

Note: To support multiple IP addresses, you must generate additional IP addresses on

your machine and then set the MultiIPSupport property to true. For more

information about generating additional IP addresses, see Generating IP Addresses in the

script in the WebLOAD Scripting Guide.

GUI mode

In WebLOAD Console, check or uncheck Multi IP Support in the HTTP Parameters

tab of the Default or Current Session Options dialog box, accessed from the Tools tab

of the ribbon.

In WebLOAD Recorder, check or uncheck Multi IP Support in the HTTP Parameters

tab of the Default or Current Project Options dialog box, accessed from the Tools tab

of the ribbon.

Comment

When the Load Generator has more than one IP address (one or more addresses on a

network interface card or one or more network interface cards), WebLOAD uses ALL

of the available IP addresses. Before setting MultiIPSupport to true, make sure that

all of the Systems under Test (SUT) to which the script refers are accessible through all

the network interface cards.

Use GetIPAddress() (see GetIPAddress() (method) on page 122) to check the identity of

the current IP address.

See also

 HTTP Components (on page 24)

 GetIPAddress() (see GetIPAddress() (method) on page 122)

 MultiIPSupport() (see MultiIPSupport (property) on page 171)

 Rules of Scope for Local and Global Variables in the WebLOAD Scripting Guide

MultiIPSupportProtocol (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 174  Chapter 4. WebLOAD Actions, Objects, and Functions

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The MultiIPSupportProtocol property works with the wlGlobals.MultiIPSupport

property, and supports the following values:

 All (default) – Support both the IPv4 and IPv6 protocols.

 IPv4Only – Support only the IPv4 IP protocol.

 IPv6Only – Support only the IPv6 IP protocol.

This property is only referenced when wlGlobals.MultiIPSupport is true.

GUI mode

In WebLOAD Console, check or uncheck Multi IP Support in the HTTP Parameters

tab of the Default or Current Session Options dialog box, accessed from the Tools tab

of the ribbon.

In WebLOAD Recorder, check or uncheck Multi IP Support in the HTTP Parameters

tab of the Default or Current Project Options dialog box, accessed from the Tools tab

of the ribbon.

See also

 HTTP Components (on page 24)

 GetIPAddress() (see GetIPAddress() (method) on page 122)

 MultiIPSupport() (see MultiIPSupport (property) on page 171)

 Rules of Scope for Local and Global Variables in the WebLOAD Scripting Guide

Name (property)

Property of Objects

 element (see element (object) on page 80)

 form (see form (object) on page 95)

 frames (see frames (object) on page 99)

 Image (see Image (object) on page 149)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

 Select (on page 230)

JavaScript Reference Guide  175 

 wlMetas (see wlMetas (object) on page 320)

Description

Sets or retrieves the identification string of the parent object.

Note: You can access a collection member either by its index number or by its HTML

name attribute.

When working with a wlMetas collection, the Name property holds the value of the

NAME attribute of the META tag.

When working with an elements collection, the Name property holds the HTML

name attribute of the form element (read-only string). The is the identification string

for elements of type Button, CheckBox, File, Image, Password, Radio, Reset, Select,

Submit, Text, and TextArea. The name attribute is required. If a form element does not

have a name, WebLOAD does not include it in the elements collection.

Syntax

Collection members may be accessed either through an index number or through a

member name, if it exists. For example:

Access the first child window on a Web page using the following expression:

frames[0]

Access the first child window’s link objects directly using the following syntax:

frames[0].frames[0].links[#].<property>

Alternatively, you may access a member of the frames collection by its HTML name

attribute. For example:

document.frames[“namestring”]

-Or-

document.frames.namestring

See also

 Collections (on page 27)

 content (see content (property) on page 56)

 httpEquiv (see httpEquiv (property) on page 144)

 Url (see Url (property) on page 289)

 176  Chapter 4. WebLOAD Actions, Objects, and Functions

NTUserName, NTPassWord (properties)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The user name and password that the script uses for Windows NT Challenge response

authentication (NT Challenge Response).

Comments

A user is only authenticated once during a round with a set of credentials. Each

subsequent request will use these credentials regardless of what is contained in the

script. If the value of these credentials are changed after authentication, they will only

be used during the next round, not during the current round.

For example, if you are trying to send a request to a URL with a group of users (user1,

user2, and user3), but user1 has already been authenticated, the login is always

performed for user1 until the round is complete.

GUI mode

By default, WebLOAD senses the appropriate authentication configuration settings for

the current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting

user authentication values through the WebLOAD Console. Enter user authentication

information through the Authentication tab of the Default or Current Options dialog

box, accessed from the Tools tab of the ribbon.

Syntax

You may also set NT user values using the wlGlobals properties. For example:

wlGlobals.NTUserName = “Bill”

wlGlobals.NTPassWord = “Classified”

Comment

WebLOAD automatically sends the user name and password when a wlHttp object

connects to an HTTP site. If an HTTP server requests NT Challenge Response

authentication and you have not assigned values to NTUserName and NTPassWord,

WebLOAD submits the Windows NT user name and password under which the script

is running.

JavaScript Reference Guide  177 

See also

 HTTP Components (on page 24)

 Rules of Scope for Local and Global Variables in the WebLOAD Scripting Guide

 Working with HTTP Protocol in the WebLOAD Scripting Guide

Num() (method)

Method of Object

 wlRand (see wlRand (object) on page 326)

Description

Return a random integer.

Syntax

wlRand.Num([seed])

Parameters

Parameter Name Description

[seed] Optional seed integer used on first call to this method only if there

was no previous call to the wlRand.Seed() method.

Return Value

A random integer.

Example

wlRand.Num(12345)

See also

 Range() (see Range() (method) on page 215)

 Seed() (see Seed() (method) on page 229)

 Select() (see Select() (method) on page 230)

onDataReceived (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

 178  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

Define a callback function to be called every time more data is received for the request.

This is useful for working with asynchronous requests (when wlHttp.Async=true)

that need to be inspected before they are completed, for example in an HTTP streaming

push scenario.

Use the callback function to handle the asynchronous request, for example – validate

the response and make a further request.

The callback function argument is a limited ‘document’ object. The document object

contains only the following properties:

 wlSource (see wlSource (property) on page 330)

 wlStatusNumber (see wlStatusNumber (property) on page 331)

 wlStatusLine (see wlStatusLine (property) on page 331)

Note: The callback is expected to run in a timely manner, because it blocks the

execution of other callback functions. Specifically, try to:

Avoid making synchronous HTTP requests – use asynchronous ones instead.

Avoid using Sleep() inside a callback function – instead, use setTimeout() (function) to

execute code after a certain period of time.

Note: The onDataRecived callback is called many times – each time more data is

received. If you only need to inspect the complete response, use the

onDocumentComplete (property) callback instead.

Example

wlHttp.Async = true;

wlHttp.onDataReceived = function(document) {

{

 if (document.wlStatusNumber==200)

 {

 InfoMessage(“Got response so far: “ + document.wlSource);

 }

}

wlHttp.Get(“http:///.....”)

See also

 HTTP Components (on page 24)

 The Using Asynchronous Requests chapter in the WebLOAD Scripting Guide

 wlSource (property) (on page 330)

 wlStatusNumber (property) (on page 331)

 wlStatusLine (property) (on page 331)

JavaScript Reference Guide  179 

 Async (property) (on page 41)

 onDocumentComplete (property) (on page 179)

onDocumentComplete (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Define a callback function to be called after the request has been completed. Useful in

asynchronous requests (when wlHttp.Async=true)

Use the callback function to handle the asynchronous request, for example – validate

the response and make a further request.

The callback function argument is the ‘document’ object, containing the response data,

headers, status, etc.

Note: The callback is expected to run in a timely manner, because it blocks the

execution of other callback functions. Specifically, try to:

Avoid making synchronous HTTP requests – use asynchronous ones instead.

Avoid using Sleep() inside a callback function – instead, use setTimeout() (function) to

execute code after a certain period of time.

Note: The onDocumentComplete callback is called only once – when the request is fully

completed. To handle partial responses, use the onDataReceived (property) callback.

Example

wlHttp.Async = true;

wlHttp.onDocumentComplete = function(document) {

 InfoMessage(“Response “ + document.wlSource);

}

wlHttp.Get(“http://get-asynch-data”);

//the script will continue to here immediately, not waiting for the

request to complete. It will run the onDocumentComplete function when

the request is finished.

See also

 HTTP Components (on page 24)

 The Using Asynchronous Requests chapter in the WebLOAD Scripting Guide

 document (object) (on page 78)

 Async (property) (on page 41)

 180  Chapter 4. WebLOAD Actions, Objects, and Functions

 onDataReceived (property) (on page 177)

Open() (method)

Method of Object

 wlInputFile (see wlInputFile (object) on page 317)

Description

Opens the input file specified in the wlInputFile object. This should be done in the

InitClient section of your script.

Syntax

function InitAgenda()

{

…

fileID = CopyFile(<full path>)

…

}

function InitClient()

{

…

MyFileObj = new wlInputFile(fileID)

MyFileObj.Open([AccessMethod], [ShareMethod], [UsageMethod],

[EndOfFileBehavior], [HeaderLines], [‘Delimiter’])

…

}

JavaScript Reference Guide  181 

Parameters

Parameter Name Description

AccessMethod An optional parameter that defines the method for reading the

next value/row from the file. All values are enumerated numeric

values. Possible values are:

 WLFileSequential. Every client gets the next value/row

from the file, where there might be multiple access to the same

line by different Load Generator machines. This is the default

value.

 WLFileSequentialUnique. Gets the next unique value/row

from the file. Preferably, the unique value is the next available

value in sequential order. If another VC is using this

value/row, the VC is not able to access this value/row and will

get the next available value/row. It is recommended to have

more values/rows in the file than the number of clients to

avoid delays.

 WLFileRandom. Gets a random value/row from the file. There

might be multiple access to the same line by different Load

Generator machines.

 WLFileRandomUnique. Gets a unique, unused value/row

randomly from the file. It is recommended to have more

values/rows in the file than the number of clients to avoid

delays.

ShareMethod An optional parameter indicating how the file is shared among

scripts. All values are enumerated numeric values. Possible values

are:

 WLFileNotShared. The file can be read only by the current

script, and each Load Generator machine manages a copy of

the file for its VCs independently. If there are multiple Load

Generator processes on a single machine, then the processes

share the file. This is the default value.

 WLFileLGShared. The file can be read only by the current

script, and all Load Generators on any Load Generator

machine share the same copy of the file, which is

synchronized between them.

 WLFileAgendaShared. The file can be shared by more than

one script. The unique identifier of the file is its path. The file

can be shared by different scripts, but a copy of the file is

managed separately for each Load Generator machine. If you

are using the script–Shared share method, all the scripts

sharing the file should use the WLFileSequentialUnique access

method.

 WLFileAgendaLGShared. A single file is shared among Load

Generators and among scripts.

 182  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameter Name Description

UsageMethod An optional parameter that defines when to release the value/row

back to the ‘pool’ so that it can be read again from the file. This

parameter is only relevant for the WLFileSequentialUnique and

WLFileRandomUnique access methods. All values are

enumerated numeric values. Possible values are:

 WLFilePerRound. The script reads a new value/row from the

file once every round. The value/row is released at the end of

the round. This is the default value.

 WLFileOncePerClient. The script reads a new value/row from

the file once at the beginning of the test (in InitClient). The

value/row is released at TerminateClient.

 WLFileOncePerSession. The script reads a new value/row

from the file once, at the beginning of the session (in

InitClient). The value/row is released at the end of the session

(in TerminateAgenda).

 WLFileAnytime. The script can read a new value/row from

the file at any time during a round. It can read a new

value/row more than once during a round. The values are

released at the end of the round. This enables more than one

value/row to be used concurrently and uniquely.

EndOfFileBehavior An optional parameter that defines how WebLOAD behaves

when it reaches the end of the file. All values are enumerated

numeric values.

Note: If you have defined the AccessMethod as

WLFileSequential or WLFileSequentialUnique, the

EndOfFileBehavior parameter is mandatory.

Possible values are:

 WLFileStartOver. Start from the beginning of the file. This is

the default value.

 WLFileKeepLast. Keep the last value.

 WLFileAbortVC. Abort the specific VC that tried to read past

the end of the file. An error message is written to the log file.

 WLFileAbortTest. Abort the entire test when a VC tries to

read past the end of the file. An error message is written to the

log file.

JavaScript Reference Guide  183 

Parameter Name Description

HeaderLines An optional parameter that defines the number of header lines the

file contains. All values are enumerated numeric values. Possible

values are:

 0. The file does not contain any header lines. This is the default

value.

 <X>. Where <X> is any number above zero. The file contains

<X> header lines at its beginning. The values contained in

these header lines are not used as parameters but as variable

names in the JavaScript code.

Delimiter (Optional) The delimiter being used in the file. The default value

is a comma.

Example

function InitAgenda()

{

InFile1 = CopyFile(“C:\\temp\input.txt”)

}

Function InitClient()

{

myFileObj = new wlInputFile(InFile1)

myFileObj.open(WLFileSequentialUnique, WLFileAgendaShared)

}

/*** WLIDE …. ***/

strLine = myFileObj.getLine(“,”)

See also

 CopyFile() (see CopyFile() (function) on page 61)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 wlInputFile() (see wlInputFile() (constructor) on page 318)

Open() (function)

Method of Object

 wlOutputFile (see wlOutputFile (object) on page 323)

Description

Opens the output file, specified in the wlOutputFile object. By default, the file is

opened for sequential access, enabling the parameters in the file to be read

sequentially. This is unique across the master and slave processes of a single Load

Generator/script combination. The master assigns the next line of the file that will be

 184  Chapter 4. WebLOAD Actions, Objects, and Functions

read sequentially for each slave. When all the information in the file is read (see

GetLine() (function) on page 123), it is returned to the beginning of the file.

Alternatively, to open the input file and read its contents in random order, you must

include Open(filename, wlRandom) in the script’s InitAgenda() function.

Note: The last line of the file should not include a carriage return.

Syntax

For sequential access:

MyFileObj = new wlOutputFile(filename)

…

MyFileObj.Open()

For random access:

Open(filename, wlRandom)

Parameters

Parameter Name Description

filename The name of the file to be opened.

wlRandom A flag indicating that the file should be opened in random access

mode.

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Reset() (see Reset() (method) on page 220)

 Using the Form Data Wizard in the WebLOAD Scripting Guide

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile() (see wlOutputFile() (constructor) on page 324)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

JavaScript Reference Guide  185 

option (object)

Property of Object

Option objects are grouped into collections of options that are themselves properties

of the following:

 element (see element (object) on page 80)

 Select (on page 230)

Description

A collection of the nested <OPTION> objects only found within elements of type

SELECT, that is, forms[n].elements[n].type = “SELECT”. Each option

object denotes one choice in a select element, containing information about a

selected form element.

option objects are local to a single thread. You cannot create new option objects

using the JavaScript new operator, but you can access HTML options through the

properties and methods of the standard DOM objects. option properties are read-

only.

option objects are grouped together within collections of options. To access an

individual option’s properties, check the length property of the options collection

and use an index number to access the individual options.

Syntax

To find out how many option objects are contained within a form element, check the

value of:

document.forms[#].elements[#].options.length

Access each option’s properties directly using the following syntax:

document.forms[#].elements[#].options[#].<option-property>

For example:

document.forms[1].elements[2].options[0].selected

Comment

Options only exist if the type of the parent element is <SELECT>, that is,

forms[n].elements[n].type = “SELECT”. For example, to check whether a

form element is of type <SELECT> and includes an options collection, you could use

the following script:

function InitAgenda()

{

wlGlobals.Proxy = “webproxy.xyz.com:8080”

 186  Chapter 4. WebLOAD Actions, Objects, and Functions

 // Through proxy

wlGlobals.SaveSource = true

wlGlobals.ParseForms = true

wlGlobals.ParseTables = true

}

function CheckElementType(WebTestSite)

{

wlHttp.Get(WebTestSite)

if (document.forms.length > 0)

if (document.forms[0].elements.length > 0)

{

InfoMessage(“We have a candidate. “ +

 “Element type is “ +

document.forms[0].elements[0].type)

InfoMessage (“document.forms[0].elements[0].options.length is “

 + document.forms[0].elements[0].options.length)

}

}

CheckElementType(“http://www.TestSite1.com/domain/pulldown.htm”)

CheckElementType(“http://www.TestSite2.com/”)

ErrorMessage(“Done!”)

Properties

 defaultselected (see defaultselected (property) on page 72)

 selected (see selected (property) on page 235)

 value (see value (property) on page 294)

Options() (method)

Method of Objects

This function is implemented as a method of the following object:

 wlHttp (see wlHttp (object) on page 316)

Description

Perform an HTTP or HTTPS Options command.

Syntax

Options([URL])

JavaScript Reference Guide  187 

Parameters

Parameter Name Description

[URL] An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the

method. Options() connects to the first URL that has been

specified from the following list, in the order specified:

 A Url parameter specified in the method call.

 The Url property of the wlHttp object.

 The local default wlLocals.Url.

 The global default wlGlobals.Url.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Delete() (see Delete() (HTTP method)) on page 74

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Head() (see Head() (method) on page 139)

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

 Put() (see Put() (method) onpage 213)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

 188  Chapter 4. WebLOAD Actions, Objects, and Functions

OuterLink (property)

Property of Objects

 Image (see Image (object) on page 149)

Description

Represents the outer link field for the parent image object.

See also

 Collections (on page 27)

 form (see form (object) on page 95)

 Select (on page 230)

Outfile (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

The name of a file to which WebLOAD writes response data from the HTTP server.

The Outfile will contain the data from the next HTTP transaction, so the Outfile

command must precede the next transaction.

The default is ““, which means do not write the response data.

If there is more than one transaction after the Outfile property, only the response

data from the first transaction will be written. To write the response data from each

transaction an Outfile statement must be placed PRIOR to each transaction.

The Outfile property is independent of the SaveSource property. Outfile saves

in a file. SaveSource stores the downloaded data in document.wlSource, in

memory.

The Outfile property is used to implement the Log Report.

Example

To write the response data from

“http://note/radview/radview.html” in “c:\temp.html”

JavaScript Reference Guide  189 

you might write:

wlHttp.Outfile = “c:\\temp.html”

wlHttp.Get(“http://note/radview/radview.html”)

Comment

The Outfile property saves server response data. To save script output messages, use the

wlOutputFile. (see wlOutputFile (object) on page 323)

See also

 wlOutputFile (see wlOutputFile (object) on page 323)

PageContentLength (property)

Property of Object

 wlVerification (see wlVerification (object) on page 337)

Description

PageContentLength is used to retrieve the size in bytes of the content object in the

GET/POST request. The content object may only be HTML, ASP, or JPG.

Syntax

wlVerification.PageContentLength

Example

wlHttp.Get("http://www.google.com/")

InfoMessage("page size" + wlVerification.PageContentLength)

See also

 wlVerification (see wlVerification (object) on page 337)

 PageTime (see PageTime (property) on page 190)

 Severity (see Severity (property) on page 247)

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

 190  Chapter 4. WebLOAD Actions, Objects, and Functions

PageTime (property)

Property of Object

 wlVerification (see wlVerification (object) on page 337)

Description

PageTime is used to retrieve the page time of the last GET. That is, the total time taken

to retrieve the page.

Syntax

wlVerification.PageTime

Example

wlHttp.Get("http://www.google.com/")

InfoMessage("page time" + wlVerification.PageTime)

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 Severity (see Severity (property) on page 247)

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

Parse (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing on an HTML page.

The Parse property can be set to one of the following values:

 always (default) – Each page is parsed and the DOM is created every time the

page is visited.

 OnceOnly – The page is parsed and the DOM is created only the first time the

page is visited. The same data is then reused on future visits.

JavaScript Reference Guide  191 

 no – The DOM is not created and no object can be retrieved.

Note: If you want the page to be parsed and the DOM created the first time the page is

visited and then reuse this data, set the ParseOnce property to true. For information

about the ParseOnce property, see ParseOnce (property) on page 198.

Note: This property can only be inserted manually.

Syntax

wlGlobals.Parse = “Always”

See also

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseApplets (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables/disables parsing of Java applets on an HTML page. The ParseApplets property

can be set to one of the following values:

 true (default) – Enables parsing of Java applets.

 false – Disables parsing of Java applets.

 192  Chapter 4. WebLOAD Actions, Objects, and Functions

Note: This property can only be inserted manually.

Note: If GetApplets is true, ParseApplets will automatically be assumed to be true,

even if it is set to false.

Example

wlGlobals.ParseApplets = false

See also

 Parse (see Parse (property)) on page 190)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseCss (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of cascading style sheets on an HTML page. The ParseApplets

property can be set to one of the following values:

 true (default) – Enables parsing of cascading style sheets.

 false – Disables parsing of cascading style sheets.

Note: This property can only be inserted manually.

JavaScript Reference Guide  193 

Note: If GetCss is true, ParseCss will automatically be assumed to be true, even if it is

set to false.

Example

wlGlobals.ParseCss = true

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseEmbeds (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of embedded objects on an HTML page. The ParseEmbeds property

can be set to one of the following values:

 true (default) – Enables parsing of embedded objects.

 false – Disables parsing of embedded objects.

Note: This property can only be inserted manually.

 194  Chapter 4. WebLOAD Actions, Objects, and Functions

Note: If GetEmbeds is true, ParseEmbeds will automatically be assumed to be true,

even if it is set to false.

Example

wlGlobals.ParseEmbeds = true

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseForms (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of forms on an HTML page. The ParseForms property can be set to

one of the following values:

 true (default) – Enables parsing of forms.

 false – Disables parsing of forms.

Note: This property can only be inserted manually.

Note: If GetForms is true, ParseForms will automatically be assumed to be true, even if

it is set to false.

JavaScript Reference Guide  195 

Example

wlGlobals.ParseForms = true

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseImages (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of images on an HTML page. The ParseImages property can be set to

one of the following values:

 true (default) – Enables parsing of images.

 false – Disables parsing of images.

Note: This property can only be inserted manually.

Note: If GetImages is true, ParseImages will automatically be assumed to be true, even

if it is set to false.

Example

wlGlobals.ParseImages = true

 196  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseLinks (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of links and areas on an HTML page. The ParseLinks property can be

set to one of the following values:

 true (default) – Enables parsing of links.

 false – Disables parsing of links.

Note: This property can only be inserted manually.

Note: If GetLinks is true, ParseLinks will automatically be assumed to be true, even if it

is set to false.

Example

wlGlobals.ParseLinks = true

JavaScript Reference Guide  197 

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseMetas (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of metas on an HTML page. The ParseMetas property can be set to one

of the following values:

 true (default) – Enables parsing of metas.

 false – Disables parsing of metas.

Note: This property can only be inserted manually.

Note: If GetMetas is true, ParseMetas will automatically be assumed to be true, even if

it is set to false.

Example

wlGlobals.ParseMetas = true

 198  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseOnce (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

When set to true, the webpage is parsed and the DOM is created only the first time

the page is visited. The same data is reused on future visits. The ParseOnce property is

set when you call SetClientType(“Thin”). By default, the ParseOnce property is

set to true.

Note: This property can only be inserted manually.

Example

wlGlobals.ParseOnce = true

See also

 Parse (see Parse (property)on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

JavaScript Reference Guide  199 

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

 SetClientType (see SetClientType (function) on page 242)

ParseOthers (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing on an HTML page for all objects not covered by specific parsing

properties. The ParseOthers property can be set to one of the following values:

 true (default) – Enables parsing of other objects.

 false – Disables parsing of other objects.

Note: This property can only be inserted manually.

Example

wlGlobals.ParseOthers = true

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 200  Chapter 4. WebLOAD Actions, Objects, and Functions

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseScripts (see ParseScripts (property) on page 200)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseScripts (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of JavaScript scripts on an HTML page. The ParseScripts property can

be set to one of the following values:

 true (default) – Enables parsing of JavaScript scripts.

 false – Disables parsing of JavaScript scripts.

Note: This property can only be inserted manually.

Note: If GetScripts is true, ParseScripts will automatically be assumed to be true, even

if it is set to false.

Example

wlGlobals.ParseScripts = true

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

JavaScript Reference Guide  201 

 ParseOthers (see ParseOthers (property) on page 199)

 ParseTables (see ParseTables (property) on page 201)

 ParseXML (see ParseXML (property) on page 202)

ParseTables (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of tables on an HTML page. The ParseTables property can be set to

one of the following values:

 true (default) – Enables parsing of tables.

 false – Disables parsing of tables.

Note: This property can only be inserted manually.

Note: If GetTables is true, ParseTables will automatically be assumed to be true, even if

it is set to false.

Example

wlGlobals.ParseTables = true

See also

 Parse (see Parse (property) on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 202  Chapter 4. WebLOAD Actions, Objects, and Functions

 ParseScripts (see ParseScripts (property) on page 200)

 ParseXML (see ParseXML (property) on page 202)

ParseXML (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enables parsing of XML on an HTML page. The ParseXML property can be set to one

of the following values:

 true (default) – Enables parsing of XML.

 false – Disables parsing of XML.

Note: This property can only be inserted manually.

Note: If GetXML is true, ParseXML will automatically be assumed to be true, even if it

is set to false.

Example

wlGlobals.ParseXML = true

See also

 Parse (see Parse (property)on page 190)

 ParseApplets (see ParseApplets (property) on page 191)

 ParseCss (see ParseCss (property) on page 192)

 ParseEmbeds (see ParseEmbeds (property) on page 193)

 ParseForms (see ParseForms (property) on page 194)

 ParseImages (see ParseImages (property) on page 195)

 ParseLinks (see ParseLinks (property) on page 196)

 ParseMetas (see ParseMetas (property) on page 197)

 ParseOnce (see ParseOnce (property) on page 198)

 ParseOthers (see ParseOthers (property) on page 199)

 ParseScripts (see ParseScripts (property) on page 200)

JavaScript Reference Guide  203 

 ParseTables (see ParseTables (property) on page 201)

PassWord (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The password that the script uses to log onto a restricted HTTP site. WebLOAD

automatically uses the appropriate access protocol. For example, if a site expects clients

to use the NT Authentication protocol, the appropriate user name and password will

be stored and sent accordingly.

Comments

A user is only authenticated once during a round with a set of credentials. Each

subsequent request will use these credentials regardless of what is contained in the

script. If the value of these credentials are changed after authentication, they will only

be used during the next round, not during the current round.

For example, if you are trying to send a request to a URL with a group of users (user1,

user2, and user3), but user1 has already been authenticated, the login is always

performed for user1 until the round is complete.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for

the current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting

user authentication values through the WebLOAD Console by entering user

authentication information through the Authentication tab of the Default or Current

Options dialog box, accessed from the Tools tab of the ribbon.

Syntax

You may also set user values using the wlGlobals properties. WebLOAD

automatically sends the user name and password when a wlHttp object connects to an

HTTP site. For example:

wlGlobals.UserName = “Bill”

wlGlobals.PassWord = “TopSecret”

 204  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 HTTP Components (on page 24)

 Working with the HTTP Protocol in the WebLOAD Scripting Guide

pathname (property)

Property of Objects

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The URI portion of the URL, including the directory path and filename (read-only

string).

Example

“/products/order.html”

“/search.exe”

port (property)

Property of Objects

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The port of the URL (read-only integer).

Example

80

JavaScript Reference Guide  205 

Post() (method)

Method of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Perform an HTTP or HTTPS Post command. The method sends the FormData, Data,

or DataFile properties in the Post command. In this way, you can submit any type of

data to an HTTP server.

Syntax

Post([URL] [, TransName])

Parameters

Parameter Name Description

[URL] An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the

method. Post() connects to first URL that has been specified from

the following list:

 A Url parameter specified in the method call.

 The Url property of the wlHttp object.

 The local default wlLocals.Url.

 The global default wlGlobals.Url.

The URL must be a server that accepts the posted data.

 206  Chapter 4. WebLOAD Actions, Objects, and Functions

[TransName] An optional user-supplied string with the transaction name as it

will appear in the Statistics Report, described in the Data Drilling-

WebLOAD transaction reports section of the WebLOAD Scripting

Guide.

Use named transactions to identify specific HTTP transactions by

name. This simplifies assigning counters when you want

WebLOAD to automatically calculate a specific transaction’s

occurrence, success, and failure rates.

The run-time statistics for transactions to which you have

assigned a name appear in the Statistics Report. For your

convenience, WebLOAD offers an Automatic Transaction option.

In the WebLOAD Console, select Automatic Transaction from the

General Tab of the Global Options dialog box. Automatic

Transaction is set to true by default. With Automatic

Transaction, WebLOAD automatically assigns a name to every

Get and Post HTTP transaction. This makes statistical analysis

simpler, since all HTTP transaction activity is measured, recorded,

and reported for you automatically. You do not have to remember

to add naming instructions to each Get and Post command in your

script. The name assigned by WebLOAD is simply the URL used

by that Get or Post transaction. If your script includes multiple

transactions to the same URL, the information will be collected

cumulatively for those transactions.

Example

function InitAgenda() {

//Set the default URL

wlGlobals.Url = “http://www.ABCDEF.com”

}

//Main script

//Connect to the default URL:

wlHttp.Post()

//Connect to a different, explicitly set URL:

wlHttp.Post(“http://www.ABCDEF.com/product_info.html”)

//Assign a name to the following HTTP transact:

wlHttp.Get(“http://www.ABCDEF.com/product_info.html”,

 “UpdateBankAccount”)

//Submit to a CGI program

wlHttp.Url = “http://www.ABCDEF.com/search.cgi”

wlHttp.FormData[“SeachTerm”] = “ocean+currents”

wlHttp.Post()

//Submit to an HTTP server of any type

wlHttp.FormData[“FirstName”] = “Bill”

wlHttp.FormData[“LastName”] = “Smith”

wlHttp.Post(“http://www.ABCDEF.com/formprocessor.exe”)

JavaScript Reference Guide  207 

Use named transactions as a shortcut in place of the

BeginTransaction()...EndTransaction() module. For example, this is one

way to identify a logical transaction unit:

BeginTransaction(“UpdateBankAccount”)

wlHttp.Get(url)

 // the body of the transaction

 // any valid JavaScript statements

wlHttp.Post(url);

EndTransaction(“UpdateBankAccount”)

 // and so on

Using the named transaction syntax, you could write:

wlHttp.Get(url,”UpdateBankAccount”)

 // the body of the transaction

 // any valid JavaScript statements

wlHttp.Post(url,”UpdateBankAccount”)

 // and so on

For the HTTPS protocol, include “https://” in the URL and set the required

properties of the wlGlobals object:

wlHttp.Post(“https://www.ABCDEF.com”)

The URL can contain a string of attribute data.

wlHttp.Post(“http://www.ABCDEF.com/query.exe”+

 “?SearchFor=icebergs&SearchType=ExactTerm”)

Alternatively, you can specify the attributes in the FormData or Data property. The

method automatically appends these in the correct syntax to the URL. Thus the

following two code fragments are each equivalent to the preceding Post command.

wlHttp.Data.Type = “application/x-www-form-urlencoded”

wlHttp.Data.Value = “SearchFor=icebergs&SearchType=ExactTerm”

wlHttp.Post(“http://www.ABCDEF.com/query.exe”)

-Or-

wlHttp.FormData.SearchFor = “icebergs”

wlHttp.FormData.SearchType = “ExactTerm”

wlHttp.Post(“http://www.ABCDEF.com/query.exe”)

Comment

You may not use the TransName parameter by itself. Post() expects to receive either

no parameters, in which case it uses the script’s default URL, or one parameter, which

must be an alternate URL value, or two parameters, including both a URL value and

the transaction name to be assigned to this transaction.

 208  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Delete() (see Delete() (HTTP method)) on page 74

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Head() (see Head() (method) on page 139)

 Options() (see Options() (method) on page 186)

 Put() (see Put() (method) onpage 213)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

ProbingClientThreads (property)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Optionally, WebLOAD can allocate extra threads to download nested images and

frames.

For clients that you define in a Load Generator, this option is controlled by the

LoadGeneratorThreads property. The default value of this property is Single,

which means that Virtual Clients will not use extra threads to download data from the

server.

For the Probing Client, the option is controlled by the ProbingClientThreads

property. The default is Multiple, which means that the client can use three extra

threads for nested downloads. This simulates the behavior of Web browsers, which

often use extra threads to download nested images and frames.

JavaScript Reference Guide  209 

The possible values of these properties are:

 Single – Do not use extra threads to download nested images and frames. (default

for LoadGeneratorThreads)

 Multiple – Allocate three extra threads per client (for a total of four threads per

client) to download nested images and frames. (default for

ProbingClientThreads)

 Any specific number of threads between 1 and 8, such as “5” – Allocate that exact

number of extra threads per client to download nested images and frames.

Example

You can assign any of these properties independently within a single script. In that

case, if you configure a Probing Client to run the script, WebLOAD uses the value of

ProbingClientThreads and ignores LoadGeneratorThreads (vice versa if you

configure a Load Generator to run the script). For example, you might write:

function InitAgenda() {

 //Do not use extra threads if a

 // Probing Client runs the script

 wlGlobals.ProbingClientThreads = “Single”

 //Use extra threads if a

 // Load Generator runs the script

 wlGlobals.LoadGeneratorThreads = “Multiple”

}

Comment

The extra threads have no effect on the ClientNum value of the client. The

ClientNum variable reports only the main thread number of each client, not the extra

threads.

GUI mode

WebLOAD recommends enabling or disabling multi-threaded virtual clients through

the WebLOAD Console. Enable multi-threading for the Load Generator or for the

Probing Client during a test session by checking the appropriate box in the Browser

Parameters tab of the Default or Current Session Options dialog box and setting the

number of threads you prefer

See also

 HTTP Components (on page 24)

 LoadGeneratorThreads (see LoadGeneratorThreads (property) on page 165)

 210  Chapter 4. WebLOAD Actions, Objects, and Functions

protocol (property)

Property of Objects

 Image (see Image (object) on page 149)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The HTTP protocol portion of the URL for the parent object (read-only string).

Example

“https://”

Proxy, ProxyUserName, ProxyPassWord (properties)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Identifies the proxy server that the script uses for HTTP access. The user name and

password are for proxy servers that require user authorization.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for

the current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting

user authentication values through the WebLOAD Console in one of the following

ways:

 Enter user authentication information through the Authentication tab of the

Default or Current Options dialog box, accessed from the Tools tab of the ribbon.

 You may also set proxy user values using the wlGlobals properties. WebLOAD

automatically connects via the proxy when a wlHttp object connects to an HTTP

site.

Syntax

wlGlobals.ProxyProperty = “TextString”

JavaScript Reference Guide  211 

Example

wlGlobals.Proxy = “proxy.ABCDEF.com:8080”

wlGlobals.ProxyUserName = “Bill”

wlGlobals.ProxyPassWord = “Classified”

See also

 HTTP Components (on page 24)

 Security in the WebLOAD Scripting Guide

 HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord (see HttpsProxy,

HttpsProxyUserName, HttpsProxyPassWord (properties) on page 145)

 HttpsProxyNTUserName, HttpsProxyNTPassWord (see HttpsProxyNTUserName,

HttpsProxyNTPassWord (properties) on page 146)

 ProxyNTUserName, ProxyNTPassWord (see ProxyNTUserName, ProxyNTPassWord

(properties) on page 212)

ProxyExceptions (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

The ProxyExceptions property accepts a string based on what the user entered in

the Proxy Options tab of the Recording and Script Generation Options dialog box. This

string indicates the URLs whose support does not go through the proxy. The format of

this string is based on the Internet Explorer format. For more information, see

http://www.microsoft.com/technet/prodtechnol/ie/ieak/techinfo/deploy/60/en/corppro

x.mspx?mfr=true.

Example

wlGlobals.ProxyExceptions = “*.example.com”

GUI mode

WebLOAD takes the current settings of the browser and displays them in the Proxy

Options tab of the Recording and Script Generation Options dialog box in WebLOAD

Recorder.

In WebLOAD Recorder, click Recording and Script Generation Options in the Tools

tab of the ribbon, and click the Proxy Options tab. Modify the fields, as necessary.

http://www.microsoft.com/technet/prodtechnol/ie/ieak/techinfo/deploy/60/en/corpprox.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/ie/ieak/techinfo/deploy/60/en/corpprox.mspx?mfr=true

 212  Chapter 4. WebLOAD Actions, Objects, and Functions

 ProxyNTUserName, ProxyNTPassWord (properties)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Provides user authorization to the proxy server that the script uses for HTTP access on

Windows servers.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for

the current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting

user authentication values through the WebLOAD Console in one of the following

ways:

 Use the Authentication tab of the Default or Current Options dialog box to enter

user authentication information.

 You may also set proxyNT user values using the wlGlobals properties.

WebLOAD automatically connects via the proxy when a wlHttp object connects

to an HTTP site.

Syntax

wlGlobals.ProxyNTProperty = “TextString”

Example

wlGlobals.ProxyNTUserName = “Bill”

wlGlobals.ProxyNTPassWord = “Classified”

See also

 HTTP Components (on page 24)

 Security in the WebLOAD Scripting Guide

 HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord (see HttpsProxy,

HttpsProxyUserName, HttpsProxyPassWord (properties) on page 145)

 HttpsProxyNTUserName, HttpsProxyNTPassWord (see HttpsProxyNTUserName,

HttpsProxyNTPassWord (properties) on page 146)

 Proxy, ProxyUserName, ProxyPassWord (see Proxy, ProxyUserName,

ProxyPassWord (properties) on page 210)

JavaScript Reference Guide  213 

Put() (method)

Method of Object

 wlHttp (see wlHttp (object) on page 316)

Description

Perform an HTTP or HTTPS Put command. The method sends the FormData, Data,

or DataFile properties in the Put command. In this way, you can submit any type of

data to an HTTP server.

Syntax

Put([URL] [, TransName])

Parameters

Parameter Name Description

[URL] An optional parameter identifying the document URL.

You may optionally specify the URL as a parameter of the method.

Put() connects to first URL that has been specified from the following

list:

 A Url parameter specified in the method call.

 The Url property of the wlHttp object.

 The local default wlLocals.Url.

 The global default wlGlobals.Url.

The URL must be a server that accepts the submitted data.

 214  Chapter 4. WebLOAD Actions, Objects, and Functions

[TransName] An optional user-supplied string with the transaction name as it will

appear in the Statistics Report, described in the Data Drilling-

WebLOAD transaction reports section of the WebLOAD Scripting Guide.

Use named transactions to identify specific HTTP transactions by

name. This simplifies assigning counters when you want WebLOAD

to automatically calculate a specific transaction’s occurrence, success,

and failure rates.

The run-time statistics for transactions to which you have assigned a

name appear in the Statistics Report. For your convenience,

WebLOAD offers an Automatic Transaction option. In the

WebLOAD Console, select Automatic Transaction from the General

Tab of the Global Options dialog box. Automatic Transaction is set to

true by default. With Automatic Transaction, WebLOAD

automatically assigns a name to every Get, Post and Put HTTP

transaction. This makes statistical analysis simpler, since all HTTP

transaction activity is measured, recorded, and reported for you

automatically. You do not have to remember to add naming

instructions to each Get, Post and Put command in your script. The

name assigned by WebLOAD is simply the URL used by that Get,

Post or Put transaction. If your script includes multiple transactions

to the same URL, the information will be collected cumulatively for

those transactions.

Comment

You may not use the TransName parameter by itself. Put() expects to receive either

no parameters, in which case it uses the script’s default URL, or one parameter, which

must be an alternate URL value, or two parameters, including both a URL value and

the transaction name to be assigned to this transaction.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Delete() (see Delete() (HTTP method)) on page 74

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Head() (see Head() (method) on page 139)

 Options() (see Options() (method) on page 186)

 Post() (see Post() (method) on page 205)

JavaScript Reference Guide  215 

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

Range() (method)

Method of Object

 wlRand (see wlRand (object) on page 326)

Description

Return a random integer between start and end.

Syntax

wlRand.Range(start, end, [seed])

Parameters

Parameter Name Description

start Integer signifying start of specified range of numbers.

end Integer signifying end of specified range of numbers.

[seed] Optional seed integer used on first call to this method only if there

was no previous call to the wlRand.Seed() method.

Return Value

A random integer that falls within the specified range.

Example

wlRand.Num(12345)

See also

 Num() (see Num() (method) on page 177)

 Seed() (see Seed() (method) on page 229)

 Select() (see Select() (method) on page 230)

ReceiveTimeout (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 216  Chapter 4. WebLOAD Actions, Objects, and Functions

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

WebLOAD performs read operations in a loop. Each iteration of the loop consists of a

wait on the socket until the server is ready, followed by a receive operation, if the read

on the socket was successful. This is performed until all the information is read, or

until the time spent in the loop exceeds the specified timeout value in the

ReceiveTimeout property, or a socket error occurs. If a timeout or socket error occur,

WebLOAD then tries to reestablish a connection (see RequestRetries (property) on

page 220). The default value of the ReceiveTimeout property is 900,000 ms.

Example

wlGlobals.ReceiveTimeout = 550000

See also

 HTTP Components (on page 24)

 RequestRetries (see RequestRetries (property) on page 220)

RedirectionLimit (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

The maximum number of redirection ‘hops’ allowed during a test session. The default

value is 10.

GUI mode

WebLOAD recommends setting the redirection limit through the WebLOAD Console.

Check Redirection Enabled and enter a limiting number on the Browser Parameters tab

of the Default or Current Session Options dialog box, accessed from the Tools tab of

the ribbon.

Syntax

You may also assign a redirection limit value using the wl.RedirectionLimit

property.

wlGlobals.RedirectionLimit = IntegerValue

JavaScript Reference Guide  217 

Example

wlGlobals.RedirectionLimit = 10

Referer (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The Referer property is used by the recorder to store the referer header and is a

synonym for wlHTTP.Headers[“referer”]. The Referer property is used as shorthand

for accessing the referer header in the wlHTTP.Headers collection.

GUI mode

To tell the system whether or not to record the referer header in the Referer property,

select or deselect the Record Referer Header checkbox in the Script Content tab of the

Recording and Script Generation Options dialog box, accessed from the Tools tab of

the ribbon.

Syntax

wlHttp.Header[“Referer”] = “http://www.testaddress.com/”.

Example

wlHttp.Header[“Referer”] = “http://www.easycar.com/”

See also

 HTTP Components (on page 24)

 Security in the WebLOAD Scripting Guide

remove() (method)

Method of Objects

 wlOutputFile (see wlOutputFile (object) on page 323)

Description

This method deletes the wlOutputFile object and closes the output file.

 218  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

wlOutputFile.remove()

Example

MyFileObj = new wlOutputFile(filename)

…

MyFileObj.remove()

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

ReportEvent() (function)

Description

This function enables you to record specific events as they occur. This information is

very helpful when analyzing website performance with Data Drilling.

Syntax

ReportEvent(EventName[, description])

Parameters

Parameter Name Description

EventName A user-supplied string that identifies the specific event and

appears in the results tables of the WebLOAD Data Drilling

feature. Since this name is used as a table header and sort key, it

must be a short string that is used consistently to identify events,

such as “URLMismatch”.

[description] An optional user-supplied string that may be longer and more

detailed than the EventName, providing more information about

the specific event.

JavaScript Reference Guide  219 

See also

 CreateDOM() (see CreateDOM() (function) on page 63)

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 TransactionTime (see TransactionTime (property) on page 287)

 Transaction Verification Components (on page 36)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

ReportLog() (method)

Method of Object

 wlException (see wlException (object) on page 306)

Description

Sends a message to the Log Window that includes the error message and severity level

stored in this wlException object.

Syntax

ReportLog()

Example

myUserException.ReportLog()

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

 wlException() (see wlException() (constructor) on page 308)

 220  Chapter 4. WebLOAD Actions, Objects, and Functions

RequestRetries (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Read operations are performed in a loop until all information is read. If the duration of

this loop exceeds a specified timeout (see ReceiveTimeout (property) on page 215) or a

socket error occurs, the Virtual Client will then retry to establish a connection.

RequestRetries is the maximum number of times that the Virtual Client will attempt to

reconnect to the server. The default value of RequestRetries is 9.

Example

wlGlobals.RequestRetries = 7

See also

 HTTP Components (on page 24)

 ReceiveTimeout (see ReceiveTimeout (property) on page 215)

Reset() (method)

Method of Object

 wlOutputFile() (see wlOutputFile (object) on page 323)

Description

Return to the beginning of the output file.

Syntax

Reset()

Example

MyFileObj = new wlOutputFile(filename)

…

MyFileObj.Reset()

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

JavaScript Reference Guide  221 

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 wlOutputFile() (see wlOutputFile() (constructor) on page 324)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

ResponseContentType (property)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The language in which WebLOAD receives the response from the SUT. This can be

HTML, XML, or Not Defined and is used to decide whether or not to parse the

response. If ResponseContentType is set to HTML or XML, the content of the response

is treated as either HTML or XML, as specified. If not, an algorithm checks the content

type of the response. This algorithm uses two other wlGlobals: HtmlContentTypes and

XmlContentTypes. These contain a list of content types that specify HTMLs and XMLs,

respectively. The algorithm checks whether the content type of the response matches

either of these lists.

Syntax

wlGlobals.ResponseContentType = “TextString”

Example

wlGlobals.ResponseContentType = “HTML”

See also

 HTTP Components (on page 24)

 222  Chapter 4. WebLOAD Actions, Objects, and Functions

RoundNum (variable)

Description

The number of times that WebLOAD has executed the main script of a client during

the WebLOAD test, including the current execution. RoundNum is a read-only local

variable, reporting the number of rounds for the specific WebLOAD client, no matter

how many other clients may be running the same script.

RoundNum does not exist in the global context of a script (InitAgenda(), etc.). In the

local context:

 In InitClient(), RoundNum = 0.

 In the main script, RoundNum = 1, 2, 3,

 In TerminateClient(), OnScriptAbort(), or

OnErrorTerminateClient(), RoundNum keeps its value from the final round.

The WebLOAD clients do not necessarily remain in synchronization. The RoundNum

may differ for different clients running the same script.

If a thread stops and restarts for any reason, the RoundNum continues from its value

before the interruption. This can occur, for example, after you issue a Pause command

from the WebLOAD Console.

If you mix scripts in a single Load Generator, WebLOAD maintains an independent

round counter for each script. For example, if WLFileAgendaShared GUI mode

WebLOAD recommends accessing global system variables, including the RoundNum

identification variable, through the WebLOAD Recorder. The variables that appear in

this list are available for use at any point in a script file. In the WebLOAD Recorder

main window, click Variables Windows in the Debug tab of the ribbon..

For example, it is convenient to add RoundNum to a Message Node to clarify the round

in which the messages that appear in the WebLOAD Console Log window originated.

Figure 11: WebLOAD Recorder Variables Window

JavaScript Reference Guide  223 

Note: RoundNum can also be added directly to the code in a script through the

IntelliSense Editor, described in Using the IntelliSense JavaScript Editor (on page 18).

See also

 ClientNum (see ClientNum (variable) on page 50)

 GeneratorName() (see GeneratorName() (function) on page 101)

 GetOperatingSystem() (see GetOperatingSystem() (function) on page 131)

 Identification Variables and Functions (on page 29)

 Using the IntelliSense JavaScript Editor (on page 18)

 VCUniqueID() (see VCUniqueID() (function) on page 296)

row (object)

Property of Objects

row objects are grouped into collections of rows. The rows collection is a property of

the following objects:

 wlTables (see wlTables (object) on page 333)

Description

When working with TextArea element objects, a row object contains the number of

rows in the TextArea.

When working with wlTables objects, a row object contains all the data found in a

single table row. Individual row objects may be addressed by index number, similar to

any object within a collection.

Syntax

Individual row objects are addressed by index number, similar to any object within a

collection. Access each row’s properties directly using the following syntax:

document.wlTables.myTable.rows[#].<row-property>

Example

To find out how many row objects are contained within myTable, check the value of:

document.wlTables.myTable.rows.length

To access a property of the 16th row in myTable, with the first row indexed at 0, you

could write:

document.wlTables.myTable.rows[15].rowIndex

 224  Chapter 4. WebLOAD Actions, Objects, and Functions

To access a property of the 4th cell in the 3rd row in myTable, counting across rows and

with the first cell indexed at 0, you could write:

document.wlTables.myTable.rows[2].cells[3].<cell-property>

Properties

Each row object contains information about the data found in the cells of a single table

row. The row object includes the following properties:

 cell (see cell (object) on page 44) (row property)

 rowIndex (see rowIndex (property) on page 224) (row property)

Comment

The row object may be accessed as a member of the wlTables family of

table, row, and cell objects.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 rowIndex (see rowIndex (property) on page 224) (row property)

 tagName (see tagName (property) on page 279) (cell property)

rowIndex (property)

Property of Object

 row (see row (object) on page 223)

JavaScript Reference Guide  225 

Description

An integer containing the ordinal index number of this row object within the parent

table. Rows are indexed starting from zero, so the rowIndex of the first row in a table

is 0.

Comment

The rowIndex property is a member of the wlTables family of table, row, and cell

objects.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 tagName (see tagName (property) on page 279) (cell property)

 wlTables (see wlTables (object) on page 333)

SaveHeaders (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

 226  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

Instruct WebLOAD to store the HTML response headers in wlHeaders.

 false –Do not store the header. (default)

 true – Store the header in document.wlHeaders.

Note: This property can only be inserted manually.

See also

 HTTP Components (on page 24)

SaveSource (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Instruct WebLOAD to store the complete HTML source code downloaded in an HTTP

command.

 false – Do not store the source HTML (default).

 true – Store the source HTML in document.wlSource.

If you enable SaveSource, WebLOAD automatically stores the downloaded HTML

whenever the script calls the wlHttp.Get() or wlHttp.Post() method. WebLOAD

stores the most recent download in the document.wlSource property, refreshing it

when the script calls wlHttp.Get() or wlHttp.Post() again. The stored code

includes any scripts or other data embedded in the HTML. Your script can retrieve the

code from document.wlSource and interpret it in any desired way.

See also

 HTTP Components (on page 24)

SaveTransaction (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

JavaScript Reference Guide  227 

Description

Instruct WebLOAD to save detailed information about all transactions, both successes

and failures, for later analysis in the Data Drilling reports.

By default, WebLOAD only saves detailed information about transaction failures for

later analysis, since most test sessions are focused on tracking down and identifying

the causes of errors and failures.

WebLOAD also provides the option of storing and analyzing the data for all

transactions in a test session, successes and failures, through the SaveTransaction

property. However, this property should be used carefully, since a successful test

session may run for an extended period, and saving data on each transaction success

could quickly use up all available disk space.

Note: Transaction data is only saved for the number of instances defined in the

Instance limit field in the WebLOAD Console (Global Options dialog box, in the Data

Drilling tab).

Possible values of the SaveTransaction property are:

 false – Do not store detailed data on successful transactions (default).

 true – Store detailed data on successful transactions.

The SaveTransaction property works with the following parameters in the Functional

Testing tab (Automatic Data Collection area) of the Current Session Options/Default

Options dialog box in the WebLOAD Console, as follows:

 Pages – When selected, WebLOAD provides timers and counters for every “Get”

in the session. When SaveTransaction is set to true, WebLOAD provides an

aggregate breakdown for all objects in the page.

 Object level – When selected, WebLOAD provides timers and counters for every

object in every page. When SaveTransaction is set to true, WebLOAD provides

breakdown information for every object in every page.

 HTTP level – When selected, WebLOAD provides breakdown information for

every failed transaction in every page. When SaveTransaction is set to true,

WebLOAD provides breakdown information for every instance of every failed

transaction in every page.

Example

function InitAgenda() {

wlGlobals.SaveTransaction = true

}

Comment

As with all wlGlobals configuration properties, the SaveTransaction property must be

set in the InitAgenda() function, as illustrated in the preceding example.

 228  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 HTTP Components (on page 24)

script (object)

Property of Object

Scripts on a Web page are accessed through script objects that are grouped into

collections of scripts. The scripts collection is a property of the following object:

 document (see document (object) on page 78)

Description

Specifies a script object in the current document that is interpreted by a script engine.

script objects are grouped together within collections of scripts.

Syntax

The scripts collection includes a length property that reports the number of script

objects within a document (read-only). To access an individual script’s properties,

check the length property of the scripts collection and use an index number to

access the individual scripts. For example, to find out how many script objects are

contained within a document, check the value of:

document.scripts.length

Access each script’s properties directly using the following syntax:

document.scripts[index#].<scripts-property>

Example

document.scripts[1].language

Properties

 event (see event (property) on page 92)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 language (see language (property) on page 161)

 src (see src (property) on page 252)

See also

 Collections (on page 27)

JavaScript Reference Guide  229 

search (property)

Property of Objects

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

The search attribute string of the URL, not including the initial ? symbol (read-only

string).

Example

“SearchFor=modems&SearchType=ExactTerm”

Seed() (method)

Method of Object

 wlRand (see wlRand (object) on page 326)

Description

Initialize the random number generator. Call the Seed() method in the

InitAgenda() function of a script, using any integer as a seed.

Syntax

wlRand.Seed(seed)

Parameters

Parameter Name Description

seed Seed integer.

Example

wlRand.Seed(12345)

See also

 Num() (see Num() (method) on page 177)

 Range() (see Range() (method) on page 215)

 Select() (see Select() (method) on page 230)

 230  Chapter 4. WebLOAD Actions, Objects, and Functions

Select

Select() (method)

Method of Object

 wlRand (see wlRand (object) on page 326)

Description

Select one element of a set at random.

Syntax

wlRand.Select(val1, val2, ..., valN)

Parameters

Parameter Name Description

val1…valN Any number of parameters itemizing the elements in a set. The

parameters can be numbers, strings, or any other objects.

Return Value

The value of one of its parameters, selected at random.

Example

wlRand.Select(21, 57, 88, 93)

See also

 Num() (see Num() (method) on page 177)

 Range() (see Range() (method) on page 215)

 Seed() (see Seed() (method) on page 229)

SelectSecondTimeout (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Specify a second option for the amount of time the system will wait for a TCP

connection to be established before timing out. The default value of

SelectSecondTimeout is 0 milliseconds.

JavaScript Reference Guide  231 

Syntax

wlGlobals.SelectSecondTimeout = number

Example

wlGlobals.SelectSecondTimeout = 100

See also

 SelectSwitchNum (see SelectSwitchNum (property) on page 231)

 SelectTimeout (see SelectTimeout (property) on page 232)

SelectSwitchNum (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The number of iterations after which the timeout is made shorter and the sleep time

longer to ease the stress on the CPU. The default value of SelectSwitchNum is 100.

Syntax

wlGlobals.SelectSwitchNum = number

Example

wlGlobals.SelectSwitchNum = 500

Comment

The following describes the basic functionality of the Load Engine.

Each read operation is limited by the RecvTimeout property. That is, the entire

algorithm described below exits when it reaches the RecvTimeout timeout.

First, a send operation is performed with a request to the server:

numberOfIterations = 0

while (wlGlobals.SendTimeout not exceeded) {

if (numberOfIterations < wlGlobals.SelectWriteSwitchNum {

timeout = wlGlobals.SelectWriteTimeout

sleepTime = wlGlbobals.SelectWriteSecondTimeout

}

else {

timeout = wlGlobals.SelectWriteSecondTimeout

 232  Chapter 4. WebLOAD Actions, Objects, and Functions

sleepTime = wlGlbobals.SelectWriteTimeout

}

select for read (timeout)

if (socket ready) break

}

send request

Then the Load Engine attempts to read the response:

numberOfIterations = 0

while (wlGlobals.RecvTimeout not exceeded) {

if (numberOfIterations < wlGlobals.SelecSwitchNum {

timeout = wlGlobals.SelecTimeout

sleepTime = wlGlbobals.SelectSecondTimeout

}

else {

timeout = wlGlobals.SelectSecondTimeout

sleepTime = wlGlbobals.SelectTimeout

}

select for write (timeout)

if (socket ready) break

}

read response

The IO operations of the Load Engine are synchronous, basically looping and polling

the sockets. The Load Engine performs a select on the socket with a timeout. If the

select on the socket fails, a short sleep is performed and the system tries to perform the

select again until the timeout specified in the SelectTimeout property is exceeded. This

also enables the Load Engine to check with the monitor between selects to see if the

session has ended.

See also

 SelectSecondTimeout (see SelectSecondTimeout (property) on page 230)

 SelectTimeout (see SelectTimeout (property) on page 232)

SelectTimeout (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

JavaScript Reference Guide  233 

Description

A timeout used when performing a select on a socket. If the select on the socket fails, a

short sleep is performed and the system tries to perform the select again until the

timeout specified in the SelectTimeout property is exceeded. The default value of

SelectTimeout is 200 milliseconds.

Syntax

wlGlobals.SelectTimeout = number

Example

wlGlobals.SelectTimeout = 300

See also

 SelectSecondTimeout (see SelectSecondTimeout (property) on page 230)

 SelectSwitchNum (see SelectSwitchNum (property) on page 231)

SelectWriteSecondTimeout (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Specify a second option of the amount of time that the connection should stay open

while nothing is being written to it. The default value of SelectWriteSecondTimeout is

10 milliseconds.

Syntax

wlGlobals.SelectWriteSecondTimeout = number

Example

wlGlobals.SelectWriteSecondTimeout = 100

See also

 SelectWriteSwitchNum (see SelectWriteSwitchNum (property) on page 234)

 SelectWriteTimeout (see SelectWriteTimeout (property) on page 234)

 234  Chapter 4. WebLOAD Actions, Objects, and Functions

SelectWriteSwitchNum (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Indicate the amount of time that elapses before switching from the first write timeout

to the second write timeout. The default value of SelectWriteSwitchNum is

100 milliseconds.

Syntax

wlGlobals.SelectWriteSwitchNum = number

Example

wlGlobals.SelectWriteSwitchNum = 100

See also

 SelectWriteSecondTimeout (see SelectWriteSecondTimeout on page 233)

 SelectWriteTimeout (see SelectWriteTimeout on page 234)

SelectWriteTimeout (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Specify the amount of time that the connection should stay open while nothing is being

written to it. The default value of SelectWriteTimeout is 200 milliseconds.

Syntax

wlGlobals.SelectWriteTimeout = number

Example

wlGlobals.SelectWriteTimeout = 300

See also

 SelectWriteSecondTimeout (see SelectWriteSecondTimeout (property) on page 233)

JavaScript Reference Guide  235 

 SelectWriteSwitchNum (see SelectWriteSwitchNum (property) on page 234)

selected (property)

Property of Objects

 option (see option (object) on page 185)

Description

The selected property has a value of true if this <OPTION> element has been

selected, or false otherwise (read-only).

See also

 location (see location (object) on page 168)

selectedindex (property)

Property of Objects

 element (see element (object) on page 80)

 location (see location (object) on page 168)

Description

Indicates which of the nested <OPTION> elements is selected in an element of type

<SELECT>. The possible values are 0, 1, 2, For example, if the first <OPTION>

element is selected, then selectedindex = 0 (read-only). The default value is 0.

SendBufferSize (property)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The SendBufferSize property defines the amount of space allocated to the outgoing

data buffer. The default value of SendBufferSize is -1, which indicates that the entire

request should be sent in one buffer.

 236  Chapter 4. WebLOAD Actions, Objects, and Functions

Note: This property can only be inserted manually.

Syntax

wlGlobals.SendBufferSize = number

Example

wlGlobals.SendBufferSize = 300

SendClientStatistics (property)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

SendClientStatistics is used to define whether or not to send statistics. It should be set

in InitAgenda. The console writes the raw data to C:\Documents and

Settings\<user name>\Local Settings\Temp\ClientStat.txt. To change

the name, add CLIENT_STATISTICS_FILE = “file-name” to webload.ini on

the console side. By default, this will save the raw statistics data for all the clients.

Only statistics calculated by the Load Generator are supported. Statistics like

hits/second are not sent and empty statistics, for example, RoundTime where no round

was completed within a time slice, are sent as -1.

Example

wlGlobals.SendClientStatistics = true

See also

 SendClientStatisticsFilter (see SendClientStatisticsFilter (property) on page 236

SendClientStatisticsFilter (property)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

JavaScript Reference Guide  237 

Description

This is a very simple filter for choosing clients for which to send statistics. The format

is “1;4;8;”. Each number is a client number and you can specify as many client numbers

as you want. Ranges and wildcards are not supported. If no client numbers are

specified, statistics are sent for all clients.

If spawning is being used and you specify, for example, “1”, statistics for the first VC

will be sent for each slave process.

Only statistics calculated by the Load Generator are supported. Statistics like

hits/second are not sent and empty statistics, for example, RoundTime where no round

was completed within a time slice, are sent as -1.

Note: The filter and file name are not checked.

Syntax

wlGlobals.SendClientStatisticsFilter = “<client number>;<client

number>;”

Example

wlGlobals.SendClientStatisticsFilter = “2;3;8”

See also

 SendClientStatistics (see SendClientStatistics (property) on page 236)

SendCounter() (function)

Description

Use this function to count the number of times an event occurs and output the value to

the WebLOAD Console. Call SendCounter() in the main script of a script.

Syntax

SendCounter(EventName)

Parameters

Parameter Name Description

EventName A string with the name of the event being counted.

See also

 SendMeasurement() (see SendMeasurement() (function) on page 238)

 SendTimer() (see SendTimer() (function) on page 239)

 SetTimer() (see SetTimer() (function) on page 244)

 Sleep() (see Sleep() (function) on page 248)

 238  Chapter 4. WebLOAD Actions, Objects, and Functions

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

 Timing Functions (on page 34)

SendMeasurement() (function)

Description

Use this function to assign a value to the specified statistical measurement. Call

SendMeasurement() in the main script of a script.

Syntax

SendMeasurement(MeasurementName, value)

Parameters

Parameter Name Description

MeasurementName A string with the name of the measurement being set.

value An integer value to set.

Example

NumberOfImagesInPage = document.images.length

SendMeasurement(“NumberOfImagesInPage”,NumberOfImagesInPage)

GUI mode

WebLOAD recommends setting measurement functions within script files directly

through the WebLOAD Recorder. In WebLOAD Recorder, drag the Send

Measurement icon from the Load toolbox into the Script Tree at the desired

location. The Send Measurement dialog box opens. Select a measurement name and its

value and click OK. The Send Measurement item appears in the Script Tree and the

JavaScript code is added to the script. To see the new JavaScript code, view the script in

JavaScript Editing mode.

See also

 SendCounter() (see SendCounter() (function) on page 237)

 SendTimer() (see SendTimer() (function) on page 239)

 SetTimer() (see SetTimer() (function) on page 244)

 Sleep() (see Sleep() (function) on page 248)

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

 Timing Functions (on page 34)

JavaScript Reference Guide  239 

SendTimer() (function)

Description

Use this function to output the value of a timer to the WebLOAD Console. Call

SendTimer() in the main script of a script, immediately after any step or sequence of

steps whose time you want to measure. Before the sequence of steps, you must call

SetTimer() to zero the timer.

Syntax

SendTimer(TimerName)

Parameters

Parameter Name Description

TimerName A string with the name of the timer being sent to the WebLOAD

Console.

Example

SendTimer(“Link 3 Time”)

GUI mode

WebLOAD recommends setting timer functions within script files directly through the

WebLOAD Recorder. In WebLOAD Recorder, drag the Send Timer icon from the

Load toolbox into the Script Tree at the desired location. The Send Timer dialog box

opens. Enter a timer name and click OK. The Send Timer item appears in the Script

Tree and the JavaScript code is added to the script. To see the new JavaScript code,

view the script in JavaScript Editing mode.

See also

 SendCounter() (see SendCounter() (function) on page 237)

 SendMeasurement() (see SendMeasurement() (function) on page 238)

 SetTimer() (see SetTimer() (function) on page 245)

 Sleep() (see Sleep() (function) on page 248)

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

 Timing Functions (on page 34)

 240  Chapter 4. WebLOAD Actions, Objects, and Functions

Set() (method)

Set() (addition method)

Method of Objects

 wlGeneratorGlobal (see wlGeneratorGlobal (object) on page 309)

 wlSystemGlobal (see wlSystemGlobal (object) on page 332)

Description

Assigns a number, Boolean, or string value to the specified shared variable. If the

variable does not exist, WebLOAD will create a new variable.

Syntax

Set(“SharedVarName”, value, ScopeFlag)

Parameters

Parameter Name Description

SharedVarName The name of a shared variable to be set.

value The value to be assigned to the specified variable.

ScopeFlag One of two flags, WLCurrentAgenda or WLAllAgendas,

signifying the scope of the shared variable.

When used as a method of the wlGeneratorGlobal object:

 The WLCurrentAgenda scope flag signifies variable values

that you wish to share between all threads of a single script,

part of a single process, running on a single Load Generator.

 The WLAllAgendas scope flag signifies variable values that

you wish to share between all threads of one or more scripts,

common to a single spawned process, running on a single

Load Generator.

When used as a method of the wlSystemGlobal object:

 The WLCurrentAgenda scope flag signifies variable values

that you wish to share between all threads of a single script,

potentially shared by multiple processes, running on multiple

Load Generators, system wide.

 The WLAllAgendas scope flag signifies variable values that

you wish to share between all threads of all scripts, run by all

processes, on all Load Generators, system-wide.

Example

wlGeneratorGlobal.Set(“MySharedCounter”, 0, WLCurrentAgenda)

wlSystemGlobal.Set(“MyGlobalCounter”, 0, WLCurrentAgenda)

JavaScript Reference Guide  241 

See also

 Add() (see Add() (method) on page 39)

 Get() (see Get() (addition method) on page 102)

Set() (cookie method)

Method of Object

 location (see location (object) on page 168)

 wlCookie (see wlCookie (object) on page 302)

Description

Creates a cookie.

You can set an arbitrary number of cookies in any thread. If you set more than one

cookie applying to a particular domain, WebLOAD submits them all when it connects

to the domain.

Syntax

wlCookie.Set(name, value, domain, path [, expire])

Parameters

Parameter Name Description

name A descriptive name identifying the type of information stored in

the cookie, for example, “CUSTOMER”.

value A value for the named cookie, for example, “JOHN_SMITH”.

domain The top-level domain name to which the cookie should be

submitted, for example, “www.ABCDEF.com”.

path The top-level directory path, within the specified domain, to

which the cookie is submitted, for example, “/”.

expire An optional expiration timestamp of the cookie, in a format such

as “Wed, 08-Apr-98 17:29:00 GMT”.

Comment

Set cookies within the main script of the script. WebLOAD deletes all the cookies at the

end of each round. If you wish to delete cookies in the middle of a round, use the

Delete() or ClearAll() method.

Example

If you combine the examples used to illustrate the parameters for this method, you end

up with the following:

wlCookie.Set(“CUSTOMER”, “JOHN_SMITH”, “www.ABCDEF.com”, “/”,

 242  Chapter 4. WebLOAD Actions, Objects, and Functions

 “Wed, 08-Apr-98 17:29:00 GMT”)

Where:

 The method creates a cookie containing the data CUSTOMER=JOHN_SMITH. This is

the data that the thread submits when it connects to a URL in the domain.

 The domain of our sample cookie is www.ABCDEF.com/. The thread submits the

cookie when it connects to any URL in or below this domain, for example,

http://info.www.ABCDEF.com/customers/FormProcessor.exe.

 The cookie is valid until the expiration time, which in this case is Wednesday,

April 8, 1998, at 17:29 GMT.

SetClientType (function)

Description

The HTTP client has the following sub types, which can be set using the SetClientType

function. These sub-types are:

 Normal (default) – When the client type is set to Normal, a DOM is created

without tables.

 Thick – When the client type is set to Thick, the tables structure is included in the

DOM.

 Thin – When the client type is set to Thin, no DOM or headers are created, and

each page is parsed only once. This type is used for very high performance with

static pages.

Use the SetClientType function with the Thick sub-type when you want to parse tables

or with the Thin sub-type when you want optimize tests for simple writes with static

pages.

Syntax

setClientType(clientType)

Parameters

Parameter Name Description

clientType A supplied string that identifies the client type. The possible client

types are Normal, Thin, Thick, Custom.

Example

setClientType(thick)

Comment

When you call SetClientType(“Thin”), the ParseOnce flag is set to true. Each page will

only be parsed the first time it is read and the list of all the resources it accesses will be

JavaScript Reference Guide  243 

saved. The next time the page is needed, the list will be reused and no additional

parsing will be performed.

See also

 HTTP Components (on page 24)

 ParseOnce (see ParseOnce (property) on page 198)

 GetImagesInThinClient (see GetImagesInThinClient (property) on page 122)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

SetFailureReason() (function)

Description

This function enables you to specify possible reasons for a transaction failure within

your transaction verification function. These reasons will also appear in the Statistics

Report. The default reason for most HTTP command (Get, Post, and Head) failures is

simply HTTP-Failure. Unless you specify another reason for failure, HTTP-Failure will

be set automatically whenever an HTTP transaction fails on the HTTP protocol level.

SetFailureReason() allows you to add more meaningful information to your error

reports.

Syntax

SetFailureReason(ReasonName)

Parameters

Parameter Name Description

ReasonName A user-supplied string that identifies and categorizes the reason

for this transaction instance failure.

Comment

The SetFailureReason() function accepts a literal string as the parameter. This

string identifies the cause of the failure. To get an accurate picture of different failure

causes, be sure to use identification strings consistently for each failure type. For

example, don’t use both ‘User Not Logged’ and ‘User Not LoggedIn’ for the

same type of failure, or your reports statistics will not be as informative. If you do not

specify a specific reason for the failure, the system will register a ‘General Failure’,

the default fail value.

 244  Chapter 4. WebLOAD Actions, Objects, and Functions

See also

 CreateDOM() (see CreateDOM() (function) on page 63)

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 TransactionTime (see TransactionTime (property) on page 287)

 Transaction Verification Components (on page 36)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

setTimeout() (function)

Description

Execute the specified callback after a specified number of milliseconds.

The script execution will continue immediately, not waiting for the specified time or

the function to execute (unlike the Sleep() (function), which instructs the script to pause

for a specified time).

Syntax

setTimeout (Func, PauseTime)

Parameters

Parameter Name Description

Func Function to be called after the specified number of milliseconds

PauseTime An integer value specifying the number of milliseconds to pause.

Example

To pause for 1 second, write:

InfoMessage(“before setTimeout”);

setTimeout(function() {

 InfoMessage(“in setTimeout”);

} , 1000);

InfoMessage(“after setTimeout”);

Sleep(2000);

InfoMessage(“after sleep”);

JavaScript Reference Guide  245 

See also

 Sleep() (function) (on page 248)

SetTimer() (function)

Description

Use this function to zero a timer. Call SetTimer() in the main script of a script,

immediately before any step or sequence of steps whose time you want to measure. Be

sure to zero the timer in every round of the script; the timer continues running

between rounds if you do not zero it.

Syntax

SetTimer(TimerName)

Parameters

Parameter Name Description

TimerName A string with the name of the timer being zeroed.

Example

SetTimer(“Link 3 Time”)

GUI mode

WebLOAD recommends setting timer functions within script files directly through the

WebLOAD Recorder. In WebLOAD Recorder, drag the Set Timer icon from the Load

toolbox into the Script Tree at the desired location. The Set Timer dialog box opens.

Enter a timer name and click OK. The Set Timer item appears in the Script Tree and the

JavaScript code is added to the script. To see the new JavaScript code, view the script in

JavaScript Editing mode.

See also

 SendCounter() (see SendCounter() (function) on page 237)

 SendMeasurement() (see SendMeasurement() (function) on page 238)

 SendTimer() (see SendTimer() (function) on page 239)

 Sleep() (see Sleep() (function) on page 248)

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

 Timing Functions (on page 34)

 246  Chapter 4. WebLOAD Actions, Objects, and Functions

SevereErrorMessage() (function)

Description

Use this function to display a severe error message in the Log Window of the

WebLOAD Console, stop the session, and abort the Load Generator.

Syntax

SevereErrorMessage(msg)

Parameters

Parameter Name Description

msg A string with a severe error message to be sent to the WebLOAD

Console.

Comment

If you call SevereErrorMessage() in the main script, WebLOAD stops all activity

in the Load Generator and runs the error handling functions (OnScriptAbort(),

etc.), if they exist in the script. You may also use the wlException (see wlException

(object) on page 306) object with the built-in try()/catch() commands to catch

errors within your script. For more information about error management and

execution sequence options, see Error Management in the WebLOAD Scripting Guide.

GUI mode

WebLOAD recommends adding message functions to your script files directly through

the WebLOAD Recorder. Drag the Message icon from the WebLOAD Recorder

toolbox into the script. The Message dialog box opens. Enter the message text, select a

severity level for the message, and click OK.

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 ReportLog() (see ReportLog() (method) on page 219)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

 wlException (see wlException (object) on page 306)

 wlException() (see wlException() (constructor) on page 308)

JavaScript Reference Guide  247 

Severity (property)

Property of Object

 wlVerification (see wlVerification (object) on page 337)

Description

Severity is used to define the global severity of a verification fail error. When

defined, Severity affects all the verifications in which severity is not defined. If you

define the error severity for a specific verification, it overrides the global severity

defined in the Severity property.

Possible values of the Severity property are:

 WLSuccess – The transaction terminated successfully.

 WLMinorError – This specific transaction failed, but the test session may continue

as usual. The script displays a warning message in the Log window and continues

execution from the next statement.

 WLError – This specific transaction failed and the current test round was aborted.

The script displays an error message in the Log window and begins a new round.

 WLSevereError – This specific transaction failed and the test session must be

stopped completely. The script displays an error message in the Log window and

the Load Generator on which the error occurred is stopped.

Example

To set the global severity of all verification fail errors to WLError, write:

wlVerification.Severity = WLError

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 PageTime (see PageTime (property) on page 190)

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

Size (property)

Property of Object

 element (see element (object) on page 80)

 248  Chapter 4. WebLOAD Actions, Objects, and Functions

 Select (on page 230)

Description

The size of a File, Password, Select, or Text element. When working with a Select

element, determines the number of rows that will be displayed, regardless of the

number of options chosen.

Sleep() (function)

Description

Pause for a specified number of milliseconds.

Syntax

Sleep(PauseTime)

Parameters

Parameter Name Description

PauseTime An integer value specifying the number of milliseconds to pause.

Example

To pause for 1 second, write:

Sleep(1000)

GUI mode

WebLOAD recommends setting sleep functions within script files directly through the

WebLOAD Recorder. Drag the Sleep icon from the General toolbox into the Script

Tree at the desired location. The Sleep dialog box opens. Enter or select the duration of

the sleep and click OK. The Sleep item appears in the Script Tree and the JavaScript

code is added to the script.

Sleep function command lines may also be added directly to the code in a JavaScript

Object within a script through the IntelliSense Editor, described in Using the IntelliSense

JavaScript Editor (on page 18).

Comment

Specify one of the sleep options when running a test script in the Sleep Time Control

tab, through the WebLOAD Recorder from the Tools  Default or Current Project

Options or through the WebLOAD Console from the Tools  Default or Current

Project Options:

 Sleep time as recorded – Runs the script with the delays corresponding to the

natural pauses that occurred when recording the script.

JavaScript Reference Guide  249 

 Ignore recorded sleep time (default) – Eliminates any pauses when running the

script and runs a worst-case stress test.

 Set random sleep time – Sets the ranges of delays to represent a range of users.

 Set sleep time deviation – Sets the percentage of deviation from the recorded

value to represent a range of users.

For more information on setting the Sleep Time Control settings, see Configuring Sleep

Time Control Options in the WebLOAD Recorder User’s Guide.

See also

 DisableSleep (see DisableSleep (property) on page 76)

 SendCounter() (see SendCounter() (function) on page 237)

 SendMeasurement() (see SendMeasurement() (function) on page 238)

 SendTimer() (see SendTimer() (function) on page 239)

 SetTimer() (see SetTimer() (function) on page 244)

 SleepDeviation (see SleepDeviation (property) on page 249)

 SleepRandomMax (see SleepRandomMax (property) on page 250)

 SleepRandomMin (see SleepRandomMin (property) on page 251)

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

 Timing Functions (on page 34)

 Using the IntelliSense JavaScript Editor (on page 18)

SleepDeviation (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

Integer that indicates the percentage by which recreated sleep periods should deviate

from the original recorded time.

Example

wlGlobals.SleepDeviation = 10

Recreated sleep periods will be within a range of +- 10% of the original recorded time.

 250  Chapter 4. WebLOAD Actions, Objects, and Functions

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period

recorded by the user during the original recording session. If you wish to include sleep

intervals but change the time period, set DisableSleep to false and assign values

to the other sleep properties as follows:

 SleepRandomMin - Assign random sleep interval lengths, with the minimum time

period equal to this property value.

 SleepRandomMax - Assign random sleep interval lengths, with the maximum

time period equal to this property value.

 SleepDeviation - Assign random sleep interval lengths, with the time period

ranging between this percentage value more or less than the original recorded time

period.

GUI mode

In WebLOAD Recorder, select the sleep mode in the Sleep Time Control tab of the

Default or Current Project Options dialog box, accessed from the Tools tab of the

ribbon.

In WebLOAD Console, select the sleep mode in the Sleep Time Control tab of the

Default or Current Session Options dialog box or the Script Options dialog box,

accessed from the Tools tab of the ribbon.

See also

 DisableSleep (see DisableSleep (property) on page 76)

 Sleep() (see Sleep() (function) on page 248)

 SleepRandomMax (see SleepRandomMax (property) on page 250)

 SleepRandomMin (see SleepRandomMin (property) on page 251)

SleepRandomMax (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

Integer that indicates the maximum length of a recreated sleep period when not using

the original recorded time.

Syntax

wlGlobals.SleepRandomMax = 5000

JavaScript Reference Guide  251 

Recreated sleep periods will fall within a range whose maximum value is 5000

milliseconds.

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period

recorded by the user during the original recording session. If you wish to include sleep

intervals but change the time period, set DisableSleep to false and assign values

to the other sleep properties as follows:

 SleepRandomMin - Assign random sleep interval lengths, with the minimum time

period equal to this property value.

 SleepRandomMax - Assign random sleep interval lengths, with the maximum

time period equal to this property value.

 SleepDeviation - Assign random sleep interval lengths, with the time period

ranging between this percentage value more or less than the original recorded time

period.

GUI mode

In WebLOAD Recorder, select the sleep mode in the Sleep Time Control tab of the

Default or Current Project Options dialog box, accessed from the Tools tab of the

ribbon.

In WebLOAD Console, select the sleep mode in the Sleep Time Control tab of the

Default or Current Session Options dialog box or in the Script Options dialog box,

accessed from the Tools tab of the ribbon.

See also

 DisableSleep (see DisableSleep (property) on page 76)

 Sleep() (see Sleep() (function) on page 248)

 SleepDeviation (see SleepDeviation (property) on page 249)

 SleepRandomMin (see SleepRandomMin (property) on page 251)

SleepRandomMin (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

Integer that indicates the minimum length of a recreated sleep period when not using

the original recorded time.

 252  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

wlGlobals.SleepRandomMin = 1000

Recreated sleep periods will fall within a range whose minimum value is 1000

milliseconds.

Comment

Sleep periods during test sessions are by default kept to the length of the sleep period

recorded by the user during the original recording session. If you wish to include sleep

intervals but change the time period, set DisableSleep to false and assign values

to the other sleep properties as follows:

 SleepRandomMin – Assign random sleep interval lengths, with the minimum

time period equal to this property value.

 SleepRandomMax – Assign random sleep interval lengths, with the maximum

time period equal to this property value.

 SleepDeviation – Assign random sleep interval lengths, with the time period

ranging between this percentage value more or less than the original recorded time

period.

GUI mode

In WebLOAD Recorder, select the sleep mode in the Sleep Time Control tab of the

Default or Current Project Options dialog box, accessed from the Tools tab of the

ribbon.

In WebLOAD Console, select the sleep mode in the Sleep Time Control tab of the

Default or Current Session Options dialog box or in the Script Options dialog box,

accessed from the Tools tab of the ribbon.

See also

 DisableSleep (see DisableSleep (property) on page 76)

 Sleep() (see Sleep() (function) on page 248)

 SleepDeviation (see SleepDeviation (property) on page 249)

 SleepRandomMax (see SleepRandomMax (property) on page 250)

src (property)

Property of Object

 Image (see Image (object) on page 149)

 script (see script (object) on page 228)

JavaScript Reference Guide  253 

 wlXmls (see wlXmls (object) on page 340)

Description

Retrieves the complete URL of the parent object, that is the URL to an external file that

contains the source code or data for this image, script, or XML DOM object.

Example

“www.ABCDEF.com/images/logo.gif”

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 load() (see load() (method) on page 163)

 loadXML() (see loadXML() (method) on page 167)

 load() and loadXML() Method Comparison (on page 164)

 XMLDocument (see XMLDocument (property) on page 345)

SSLBitLimit (property)

Property of Object

 wlGlobals (see wlGlobals (object) on page 313)

Description

WebLOAD provides the option of setting a limit to the maximum SSL bit length

available to Virtual Clients when contacting the Server. By default, WebLOAD

supports a maximum SSLBitLimit of 128 bits. Users may lower the SSLBitLimit

as necessary.

You may assign an SSL bit limit value using the wlGlobals.SSLBitLimit property.

Check the value of this property if you wish to verify the maximum cipher strength

(SSL bit limit) available for the current test session. For example, if all ciphers are

enabled, then the maximum cipher strength is 128.

Note: Defining an SSL bit limit with the SSLBitLimit property is a low-level

approach to enabling or disabling individual protocols. Even if you prefer to program

property values directly rather than working through the GUI, it is usually preferable

to use the SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) to define

and enable cipher levels and cryptographic strengths using a higher, more categorical

approach.

 254  Chapter 4. WebLOAD Actions, Objects, and Functions

Note: This property can only be inserted manually.

Syntax

wlGlobals.SSLBitLimit = IntegerValue

Example

wlGlobals.SSLBitLimit = 56

-Or-
CurrentBitLimit = wlGlobals.SSLBitLimit

GUI mode

WebLOAD recommends setting the SSL bit limit through the WebLOAD Console.

Check SSL Bit Limit and select a value from the drop-down list on the SSL tab of the

Default or Current Session Options dialog box, accessed from the Tools tab of the

ribbon.

See also

 HTTP Components (on page 24)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLEnableStrength() (see SSLEnableStrength() (function) on page 262)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlHttp (see wlHttp (object) on page 316)

JavaScript Reference Guide  255 

SSLCipherSuiteCommand() (function)

Description

Set the SSL configuration environment before running a test script.

Note: This property can only be inserted manually.

Syntax

SSLCipherSuiteCommand(“SSLCipherCommand”)

Parameters

Parameter Name Description

SSLCipherCommand One of the following commands, used to set the SSL configuration

environment before running a test script.

 EnableAll – Enable all SSL protocols (default)

 DisableAll – Disable all SSL protocols

 ShowAll – List all SSL protocols (provides internal

information for RadView Support Diagnostics)

 ShowEnabled – List currently enabled SSL protocols

(provides internal information for RadView Support

Diagnostics)

Note that the command name should appear in quotes.

Example

You may wish to test your application with only a single SSL protocol enabled. The

easiest way to do that would be to disable all protocols, and then enable the selected

protocol in the InitClient() function.

InitClient()

{

…

SSLCipherSuiteCommand(“DisableAll”)

SSLEnableCipherName(“EXP-RC4-MD5”)

…

}

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 256  Chapter 4. WebLOAD Actions, Objects, and Functions

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

SSLClientCertificateFile,

SSLClientCertificatePassword (properties)

Properties of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

SSL Client certificates offer a more secure method of authenticating users in an Internet

commerce scenario then traditional username and password solutions. For servers that

support client authentication, the server will request an identification certificate that

contains information to identify the client and is signed by a recognized certificate

authority. WebLOAD supports use of SSL client certificates by supplying the certificate

filename and password to the SSL server. SSLClientCertificateFile and

SSLClientCertificatePassword are the filename (optionally including a

directory path) and password of a certificate, which WebLOAD makes available to SSL

JavaScript Reference Guide  257 

servers. When the script issues an HTTPS Get, Post, or Head command, the server can

request the certificate as part of the handshake procedure. In that case, WebLOAD

sends the certificate to the server, and the server can use it to authenticate the client

transmission.

You may set client certificate values using the wlGlobals properties.

Note: You can obtain a certificate file by exporting an X.509 certificate from Microsoft

Internet Explorer or Netscape Navigator. Then use the WebLOAD Certificate Wizard

to convert the certificate to an ASCII (*.pem) format.

Syntax

wlGlobals.SSLProperty = “TextString”

Example

wlGlobals.SSLClientCertificateFile = “c:\\certs\\cert1.pem”

wlGlobals.SSLClientCertificatePassword = “topsecret”

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for

the current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting

user authentication values through the WebLOAD Console. Enter user authentication

information through the Authentication tab of the Default or Current Session Options

dialog box, accessed from the Tools tab of the ribbon.

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 258  Chapter 4. WebLOAD Actions, Objects, and Functions

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

SSLCryptoStrength (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

Description

Used to define the cryptographic categories to be used in the current test session. The

following categories are available:

 “SSL_AllCrypto” – Enable cryptography of all strengths (default).

 “SSL_StrongCryptoOnly” – Enable only ciphers with strong cryptography

(RSA keys greater than 512-bit and DES/EC keys greater than 40-bit).

 “SSL_ExportCryptoOnly” – Enable only ciphers available for export, including

only RSA keys 512-bit or weaker and DES/EC keys 40-bit or weaker.

 “SSL_ServerGatedCrypto” – Verify that the communicating server is legally

authorized to use strong cryptography before using stronger ciphers. Otherwise

use export ciphers only.

These definitions work with your script’s current set of enabled ciphers. If you have

enabled only certain ciphers, then setting SSLCryptoStrength would affect only the

subset of enabled ciphers.

Example

Assume you have enabled the following ciphers:

 DHE_DSS_ RC4_SHA

 DES_CBC_MD5

 AECDH_NULL_SHA

 EXP_RC4_MD5

If you then set SSLCryptoStrength to SSL_ExportCryptoOnly, then only the last

two ciphers, AECDH_NULL_SHA, and EXP_RC4_MD5, will be enabled.

JavaScript Reference Guide  259 

InitClient()

{

?

SSLEnableCipherName(“DHE_DSS_RC4_SHA”)

SSLEnableCipherName(“DES_CBC_MD5”)

SSLEnableCipherName(“AECDH_NULL_SHA”)

SSLEnableCipherName(“EXP_RC4_MD5”)

wlGlobals.SSLCryptoStrength=“SSL_ExportCryptoOnly”

?

}

Comment

Defining a global, categorical value for SSLCryptoStrength is a high-level approach

to cryptographic strength definition. This ‘smarter’ approach of selecting appropriate

categories is usually preferable to the low-level approach of enabling or disabling

individual protocols or defining specific SSL bit limits with the SSLBitLimit and

SSLVersion properties. However, ideally SSL configuration values should be set

through the WebLOAD GUI.

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 260  Chapter 4. WebLOAD Actions, Objects, and Functions

SSLDisableCipherID() (function)

Description

Disables the specified SSL cipher for the current session.

Syntax

SSLDisableCipherID(CipherID)

Parameters

Parameter Name Description

CipherID The SSL cipher to disable for the current session.

Example

You may wish to test your application with all but one SSL protocol enabled. The

easiest way to do that would be to disable the selected protocol in the InitClient()

function.

Initclient()

{

…

SSLDisableCipherID(45)

…

}

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

JavaScript Reference Guide  261 

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

SSLDisableCipherName() (function)

Description

Disables the specified SSL cipher for the current session.

Syntax

SSLDisableCipherName(CipherName)

Parameters

Parameter Name Description

CipherName Any of the SSL protocol names. See WebLOAD-supported SSL

Protocol Versions (on page 449) for a complete list of protocol

names.

Example

You may wish to test your application with all but one SSL protocol enabled. The

easiest way to do that would be to disable the selected protocol in the InitClient()

function.

InitClient()

{

…

SSLDisableCipherName("EXP-RC4-MD5")

…

}

See also

 Browser Configuration Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 262  Chapter 4. WebLOAD Actions, Objects, and Functions

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

SSLEnableStrength() (function)

Description

Enables all ciphers which have encryption strength not greater than specified by the

parameter. Function allows you to limit SSL key length without iterating over the

whole ciphers list.

Syntax

SSLEnableStrength(MaxStrength)

Parameters

Parameter Name Description

MaxStrength The maximum encryption strength allowed. Strength must be

specified in bits (typical values are 40, 56, 96, 128, 168, 196, 256,

512, 1024, etc.).

Example

Your test session may include a variety of function calls related to specific set of SSL

ciphers. For example, you may wish to test your application with weak ciphers only.

JavaScript Reference Guide  263 

The following InitAgenda() function fragment enables all protocols with encryption

strength less or equal to 128 bits.

InitAgenda()

{

 …

 SSLEnableStrength(128)

 …

}

See also

 Browser Configuration Components (on page 24)

 SSLBitLimit (see "SSLBitLimit (property)" on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see "SSLCipherSuiteCommand() (function)" on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see

"SSLClientCertificateFile, SSLClientCertificatePassword (properties)" on page 256)

 SSLCryptoStrength (see "SSLCryptoStrength (property)" on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see "SSLDisableCipherID() (function)" on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherName() (see "SSLEnableCipherName() (function)" on page 265)

 SSLGetCipherCount() (see "SSLGetCipherCount() (function)" on page 266)

 SSLGetCipherID() (see "SSLGetCipherID() (function)" on page 267)

 SSLGetCipherInfo() (see "SSLGetCipherInfo() (function)" on page 269)

 SSLGetCipherName() (see "SSLGetCipherName() (function)" on page 270)

 SSLGetCipherStrength() (see "SSLGetCipherStrength() (function)" on page 271)

 SSLUseCache (see "SSLUseCache (property)" on page 272)

 SSLVersion (see "SSLVersion (property)" on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 264  Chapter 4. WebLOAD Actions, Objects, and Functions

SSLEnableCipherID() (function)

Description

Enables the specified SSL cipher for the current session.

Syntax

SSLEnableCipherID(CipherID)

Parameters

Parameter Name Description

CipherID Any of the SSL protocol ID numbers. Use SSLGetCipherID()

(see SSLGetCipherID() (function) on page 267) function to get the ID

number associated with a specified protocol name. See WebLOAD-

supported SSL Protocol Versions (on page 449) for a complete list of

protocol names.

Example

Your test session may include a variety of function calls related to specific protocols.

For example, you may wish to test your application with only a single SSL protocol

enabled. Unfortunately, protocol names can be long and awkward. To simplify your

script code, you could get the ID number of a selected protocol and refer to the selected

protocol by ID number for the remainder of the script. The following InitClient()

function fragment disables all protocols, gets a protocol ID number, and enables the

selected protocol in the InitClient() function.

InitClient()

{

…

SSLCipherSuiteCommand(DisableAll)

MyCipherID = SSLGetCipherID("EXP-RC4-MD5")

SSLEnableCipherID(MyCipherID)

…

}

See also

 Browser Configuration Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

JavaScript Reference Guide  265 

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

SSLEnableCipherName() (function)

Description

Enables the specified SSL cipher for the current session.

Syntax

SSLEnableCipherName(CipherName)

Parameters

Parameter Name Description

CipherName Any of the SSL protocol names. See WebLOAD-supported SSL

Protocol Versions (on page 449) for a complete list of protocol

names.

Example

You may wish to test your application with only a single SSL protocol enabled. The

easiest way to do that would be to disable all protocols, and then enable the selected

protocol in the InitAgenda() function:

InitAgenda()

{

…

SSLCipherSuiteCommand(DisableAll)

 266  Chapter 4. WebLOAD Actions, Objects, and Functions

SSLEnableCipherName("EXP-RC4-MD5")

…

}

See also

 Browser Configuration Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

SSLGetCipherCount() (function)

Description

Returns an integer, the number of ciphers enabled for the current test session. While

that may seem obvious if your script explicitly enables two or three ciphers, it may be

necessary if, for example, you have set a cipher strength limit of 40 and then wish to

know how many ciphers are currently available at that limit.

Syntax

SSLGetCipherCount()

JavaScript Reference Guide  267 

Return Value

Returns an integer representing the number of ciphers enabled for the current test

session.

Example

CurrentCipherCount = SSLGetCipherCount()

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 wlHttp (see wlHttp (object) on page 316)

SSLGetCipherID() (function)

Description

Returns the ID number associated with the specified cipher.

Syntax

SSLGetCipherID(CipherName)

 268  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameters

Parameter Name Description

CipherName Any of the SSL protocol names. See WebLOAD-supported SSL

Protocol Versions (on page 449) for a complete list of protocol

names.

Return Value

Returns the ID number associated with the specified cipher.

Example

MyCipherID = SSLGetCipherID(“EXP-RC4-MD5”)

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

JavaScript Reference Guide  269 

SSLGetCipherInfo() (function)

Description

Prints a message on the WebLOAD Console with information about the specified SSL

protocol.

Syntax

SSLGetCipherInfo(CipherName  CipherID)

Parameters

Accepts either one of the following parameters:

Parameter Name Description

CipherName The name of the SSL cipher.

CipherID The identification number of the SSL cipher.

Example

You may specify an SSL protocol using either the protocol name or the ID number. The

function accepts either a string or an integer parameter, as illustrated here:

SSLGetCipherInfo(“EXP-RC4-MD5”)

-Or-

SSLGetCipherInfo(2)

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 270  Chapter 4. WebLOAD Actions, Objects, and Functions

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

SSLGetCipherName() (function)

Description

Returns the name of the cipher associated with the specified ID number.

Syntax

SSLGetCipherName(CipherID)

Parameters

Parameter Name Description

CipherID Any of the SSL protocol ID numbers.

Return Value

Returns the name of the cipher associated with the specified ID number.

Example

MyCipherName = SSLGetCipherName(16)

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

JavaScript Reference Guide  271 

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

SSLGetCipherStrength() (function)

Description

Returns an integer, the maximum cipher strength (SSL bit limit) available for the

current test session. For example, if all ciphers are enabled, then the maximum cipher

strength is 128.

Syntax

SSLGetCipherStrength()

Return Value

Returns an integer representing the maximum available cipher strength for the current

session.

Example

CurrentCipherStrength = SSLGetCipherStrength()

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 272  Chapter 4. WebLOAD Actions, Objects, and Functions

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLUseCache (see SSLUseCache (property) on page 272)

 SSLVersion (see SSLVersion (property) on page 274)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

SSLUseCache (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Enable caching of SSL decoding keys received from an SSL (HTTPS) server. The value

of SSLUseCache may be:

 false – Disable caching.

 true – Enable caching. (default)

A true value means that WebLOAD receives the key only on the first SSL connection

in each round. In subsequent connections, WebLOAD retrieves the key from the cache.

JavaScript Reference Guide  273 

Assign a true value to reduce transmission time during SSL communication. Assign a

false value if you want to measure the transmission time of the decoding key in the

WebLOAD performance statistics for each SSL connection.

If you enable caching, you can clear the cache at any time by calling the

wlHttp.ClearSSLCache() method. The cache is automatically cleared at the end of

each round.

GUI mode

WebLOAD recommends enabling or disabling the SSL cache through the WebLOAD

Console. Enable caching for the Load Generator or for the Probing Client during a test

session by checking the appropriate box in the Browser Parameters tab of the Default

Options dialog box, accessed from the Tools tab of the ribbon.

Comment

To clear the SSL cache, set the ClearSSLCache() (see ClearSSLCache() (method) on

page 49) property.

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLVersion (see SSLVersion (property) on page 274)

 274  Chapter 4. WebLOAD Actions, Objects, and Functions

SSLVersion (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The SSL version that WebLOAD should use for the current test session. The possible

values of wlGlobals.SSLVersion are:

 SSL_Version_Undetermined – (Default) WebLOAD can use any SSL protocol

version, allowing the broadest interoperability with other SSL installations.

WebLOAD sends initial messages using SSL 2.0, then attempts to negotiate up to

SSL 3.0. If the peer requests SSL 2.0 communications, SSL 2.0 is used for further

communication.

Note: WebLOAD does not recommend changing the default value.

 SSL_Version_3_0_With_2_0_Hello – WebLOAD sends initial messages using

SSL 2.0, but all subsequent communication must be through SSL 3.0 only.

Otherwise the connection will fail with a meaningful error message.

 TLS_Version_1.0_With_2_0_Hello – WebLOAD sends initial messages using

SSL 2.0, but all subsequent communication must be through TLS 1.0 only.

Otherwise the connection will fail with a meaningful error message.

 SSL_Version_3_0_Only – All communication is by SSL 3.0 only. If the peer does

not support SSL 3.0, the handshake fails without a meaningful indication of why it

failed. Use this option for highest security when working with peers that definitely

support SSL 3.0.

 TLS_Version_1_0_Only – All communication is by TLS 1.0 only. If the peer

does not support TLS 1.0, the handshake fails without a meaningful indication of

why it failed. Use this option for highest security when working with peers that

definitely support TLS 1.0.

 SSL_Version_3_0 – WebLOAD sends initial messages using SSL 3.0. If the peer

requests SSL 2.0 communications, SSL 2.0 is used for further communication.

 SSL_Version_2_0 – WebLOAD sends initial messages and all further

communication using SSL 2.0. This option is not recommended other than for

testing, because SSL 3.0 is more functional and secure than SSL 2.0.

 TLS_Version_1_0 – WebLOAD sends initial messages using TLS 1.0. If the peer

requests SSL 3.0 communications, SSL 3.0 is used for further communication.

To connect to a server using any of the SSL options, include https:// in the URL.

JavaScript Reference Guide  275 

Example

wlGlobals.SSLVersion = “SSL_Version_3_0_Only”

wlGlobals.Url = https://www.ABCDEF.com

See WebLOAD-supported SSL Protocol Versions (on page 449) for a table illustrating all

the Client/Server SSL version handshake combination possibilities and a complete list

of SSL/TLS protocol names.

See also

 HTTP Components (on page 24)

 SSLBitLimit (see SSLBitLimit (property) on page 253) (wlGlobals only)

 SSL Cipher Command Suite (on page 33)

 SSL Ciphers – Complete List (on page 450)

 SSLCipherSuiteCommand() (see SSLCipherSuiteCommand() (function) on page 255)

 SSLClientCertificateFile, SSLClientCertificatePassword (see SSLClientCertificateFile,

SSLClientCertificatePassword (properties) on page 256)

 SSLCryptoStrength (see SSLCryptoStrength (property) on page 258) (wlGlobals

only)

 SSLDisableCipherID() (see SSLDisableCipherID() (function) on page 260)

 SSLDisableCipherName() (see SSLDisableCipherName() (function) on page 261)

 SSLEnableCipherID() (see SSLEnableCipherID() (function) on page 264)

 SSLEnableCipherName() (see SSLEnableCipherName() (function) on page 265)

 SSLGetCipherCount() (see SSLGetCipherCount() (function) on page 266)

 SSLGetCipherID() (see SSLGetCipherID() (function) on page 267)

 SSLGetCipherInfo() (see SSLGetCipherInfo() (function) on page 269)

 SSLGetCipherName() (see SSLGetCipherName() (function) on page 270)

 SSLGetCipherStrength() (see SSLGetCipherStrength() (function) on page 271)

 SSLUseCache (see SSLUseCache (property) on page 272)

StopClient () (function)

Description

Stops the execution of the Virtual Client running the script from which

StopClient() was called. After StopClient() is called, this client cannot be

resumed.

 276  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

StopClient ([SeverityLevel], [Reason])

Parameters

Parameter Name Description

SeverityLevel Optionally, specify the severity level of the error that occurred.

The possible values are:

 WLMinorError. The message is displayed as a warning

message.

 WLError. The message is displayed as an error message.

If no severity level is specified, WLMinorError is assumed.

Note: Error levels are used for display in the log window and do

not define any logical behavior.

Reason An optional string containing the reason for stopping the virtual

client running the script.

If no reason is specified, a default message is displayed. See

Default Message below.

Default Message

The following default message is displayed when no reason is specified:

StopClient(WLError, “Client”+%d+”was terminated by a user command in

the script”)

where %d is a parameter that takes the number of the client that was terminated. For

example, “Client 38 was terminated by a user command in the script”.

Examples

StopClient(WLError, “Error occurred when running script, client

terminated”)

StopClient(, “Error occurred when running script, client terminated”)

StopClient(WLError)

StopGenerator () (function)

Description

Stop the script from within the script. The string passed as a parameter is the message

that appears when the script is stopped.

Syntax

StopGenerator(string)

JavaScript Reference Guide  277 

Parameters

Parameter Name Description

String The message to be displayed when the script is stopped.

Example

StopGenerator(“The script was terminated from within the script”)

string (property)

Property of Object

 title (see title (property) on page 284)

Description

Stores the document title in a text string.

SynchronizationPoint() (function)

Description

WebLOAD provides Synchronization Points to coordinate the actions of multiple

Virtual Clients. A Synchronization Point is a meeting place where Virtual Clients wait

before continuing with a script. When one Virtual Client arrives at a Synchronization

Point, WebLOAD holds the Client at the point until all the other Virtual Clients arrive.

When all the Virtual Clients have arrived, they are all released at once to perform the

next action in the script simultaneously. For more information on Synchronization

Points, see Working with Synchronization Points in the WebLOAD Scripting Guide.

Syntax

SynchronizationPoint([timeout])

Parameters

Parameter Name Description

timeout An optional integer value that sets the number of milliseconds

that WebLOAD will wait for all of the Virtual Clients to arrive at

the Synchronization Point. The timeout parameter is a safety

mechanism that prevents an infinite wait if any of the Virtual

Clients does not arrive at the Synchronization Point for any

reason. Once the timeout period expires, WebLOAD releases the

rest of the Virtual Clients. By default, there is no timeout value.

WebLOAD will wait an infinite amount of time for all Virtual

Clients to arrive. Setting a timeout value is important to ensure

that the test session will not ‘hang’ indefinitely in case of error.

 278  Chapter 4. WebLOAD Actions, Objects, and Functions

Return Value

SynchronizationPoint() functions return one of the following values. These

values may be checked during the script runtime.

 WLSuccess – Synchronization succeeded. All Virtual Clients arrived at the

Synchronization Point and were released together.

 WLLoadChanged – Synchronization failed. A change in the Load Size was detected

while Virtual Clients were being held at the Synchronization Point. All Virtual

clients were released.

 WLTimeout – Synchronization failed. The timeout expired before all Virtual

Clients arrived at the Synchronization Point. All Virtual Clients were released.

 WLError – Synchronization failed. Invalid timeout value. All Virtual Clients were

released.

Example

The following script fragment illustrates a typical use of synchronization points. To test

a Web application with all the Virtual Clients performing a particular Post operation

simultaneously, add a Synchronization Point as follows. The various return values are

highlighted:

wlHttp.Get(“url”)

…

SP = SynchronizationPoint(10000)

if (SP == WLLoadChanged)

{

InfoMessage(“Syncronization failed, Load Size changed”)

InfoMessage(“SP = “ + SP.toString() + “ “ + ClientNum)

}

if (SP == WLTimeout)

{

InfoMessage(“Syncronization failed, Timeout expired”)

InfoMessage(“SP = “ + SP.toString() + “ “ + ClientNum)

}

if (SP == WLError)

{

InfoMessage(“Syncronization failed”)

InfoMessage(“SP = “ + SP.toString() + “ “ + ClientNum)

}

if (SP == WLSuccess)

{

InfoMessage(“Synchronization succeeded”)

InfoMessage(“SP = “ + SP.toString() + “ “+ ClientNum)

}

wlHttp.Post(url)

JavaScript Reference Guide  279 

GUI mode

WebLOAD recommends setting synchronization functions within script files directly

through the WebLOAD Recorder. Drag the Synchronization Point icon from the

Load toolbox into the Script Tree directly before the action you want all Virtual Clients

to perform simultaneously. The Synchronization Point dialog box opens. Enter or

select a timeout value for the Synchronization Point and click OK. The

Synchronization Point item appears in the Script Tree and the JavaScript code is

added to the script. The JavaScript code line that corresponds to the Synchronization

Point in the Script Tree appears in the JavaScript View.

Comment

If there is a change in the Load Size (scheduled or unscheduled) or if any WebLOAD

component is paused or stopped during the test session, all Synchronization Points are

disabled.

Only client threads running within a single spawned process, on the same Load

Generator, are able to share user-defined global variables and synchronization points.

So if, for example, you have spawning set to 100 and you are running a total of 300

threads, realize that you are actually running three spawned processes on three

separate Load Generators. You will therefore only be able to synchronize 100 client

threads at a time, and not all 300.

See also

 SendCounter() (see SendCounter() (function) on page 237)

 SendMeasurement() (see SendMeasurement() (function) on page 238)

 SendTimer() (see SendTimer() (function) on page 239)

 SetTimer() (see SetTimer() (function) on page 244)

 Sleep() (see Sleep() (function) on page 248)

 SynchronizationPoint() (see SynchronizationPoint() (function) on page 277)

 Timing Functions (on page 34)

tagName (property)

Property of Object

 cell (see cell (object) on page 44)

Description

A string containing the cell type, either <TD> or <TH>.

 280  Chapter 4. WebLOAD Actions, Objects, and Functions

Syntax

Use the following syntax to check a particular table cell type:

document.wlTables.myTable.cells[index#].tagName

Comment

The tagName property is a member of the wlTables family of table, row, and cell

objects.

See also

 cell (see cell (object) on page 44) (wlTables and row property)

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 cols (see cols (property) on page 54) (wlTables property)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 id (see id (property) on page 146) (wlTables property)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 row (see row (object) on page 223) (wlTables property)

 rowIndex (see rowIndex (property) on page 224) (row property)

 wlTables (see wlTables (object) on page 333)

target (property)

Property of Object

 form (see form (object) on page 95)

 link (see link (object) on page 162)

JavaScript Reference Guide  281 

Description

The name of the window or frame into which the form or link should be downloaded

(read-only string).

Example

In the following code fragment:

Go to New Page.

The target property would equal “_top” and the link will load the page into the top

frame of the current frameset.

Comment

While link and location objects share most of their properties, the target

property is used by the link object only and is not accessed by the location object.

The form.target and link.target properties identify the most recent, immediate

location of the target frame using the name string or keyword that was assigned to that

frame. Compare this to the wlHttp.wlTarget property of a transaction, which uses

the WebLOAD shorthand notation, described in the WebLOAD Scripting Guide, to store

the complete path of the frame, from the root window of the Web page. The last field

of the wlHttp.wlTarget string is the target name stored in the form.target and

link.target properties.

See also

 wlTarget (see wlTarget (property) on page 334)

Text (function)

Description

Verify the absence or presence of a specified text expression within the Web server

response.

Syntax

wlVerification.Text(searchOption, text, severity)

Parameters

Parameter Name Description

searchOption Possible values are: WLFind or WLNotFind.

text String text to find in the document.wlSource.

 282  Chapter 4. WebLOAD Actions, Objects, and Functions

severity Possible values of this parameter are:

 WLSuccess. The transaction terminated successfully.

 WLMinorError. This specific transaction failed, but the test

session may continue as usual. The script displays a warning

message in the Log window and continues execution from the

next statement.

 WLError. This specific transaction failed and the current test

round was aborted. The script displays an error message in

the Log window and begins a new round.

 WLSevereError. This specific transaction failed and the test

session must be stopped completely. The script displays an

error message in the Log window and the Load Generator on

which the error occurred is stopped.

Example

The following code verifies that the server response does not contain the word "error".

In case of failure, WebLOAD displays the error message and stops the execution.

wlVerification.Text(WLNotFind, "error", WLError);

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 Severity (see Severity (property) on page 247)

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

ThreadNum() (property)

Description

Assigns a unique number to a process based on the client/Load Generator/script. This

number is unique across the script’s slave processes and is saved in the ClientNum

property. Each client in a Load Generator is assigned a unique number. However, two

clients in two different Load Generators may have the same number.

Note: While ClientNum is unique within a single Load Generator, it is not unique

system wide. Use VCUniqueID() (see VCUniqueID() (function) on page 296) to obtain an

ID number which is unique system-wide.

If there are N clients in a Load Generator, the clients are numbered 0, 1, 2, ...,

N-1. You can access ClientNum anywhere in the local context of the script

JavaScript Reference Guide  283 

(InitClient(), main script, TerminateClient(), etc.). ClientNum does not exist

in the global context (InitAgenda(), TerminateAgenda(), etc.).

If you mix scripts within a single Load Generator, instances of two or more scripts may

run simultaneously on each client. Instances on the same client have the same

ClientNum value.

ClientNum reports only the main client number. It does not report any extra threads

spawned by a client to download nested images and frames (see LoadGeneratorThreads

(property) on page 165).

Comment

Earlier versions of WebLOAD referred to this value as ThreadNum. The variable name

ThreadNum will still be recognized for backward compatibility.

Example

InfoMessage(“ThreadNum: “ + ThreadNum())

See also

 ClientNum() (see ClientNum (property) on page 50)

 VCUniqueID (see VCUniqueID() (function) on page 296)

TimeoutSeverity (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

When conducting Page Verification tests, TimeoutSeverity stores the error level to

be triggered if the full set of verification tests requested for the current page are not

completed within the specified time limit.

GUI mode

WebLOAD recommends setting page verification severity levels through the

WebLOAD Console. Check Verification in the Page Time area and select an error

severity level from the drop-down box in the Functional Testing tab of the Default or

Current Project Options dialog box, accessed from the Tools tab of the ribbon.

Syntax

You may also assign a severity level using the TimeoutSeverity property.

 284  Chapter 4. WebLOAD Actions, Objects, and Functions

wlGlobals.TimeoutSeverity = ErrorFlag

The following error codes are available:

 WLSuccess – The transaction terminated successfully.

 WLMinorError – This specific transaction failed, but the test session may continue

as usual. The script displays a warning message in the Log window and continues

execution from the next statement.

 WLError – This specific transaction failed and the current test round was aborted.

The script displays an error message in the Log window and begins a new round.

 WLSevereError – This specific transaction failed and the test session must be

stopped completely. The script displays an error message in the Log window and

the Load Generator on which the error occurred is stopped.

Example

wlGlobals.TimeoutSeverity = WLError.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 Transaction Verification Components (on page 36)

 TransactionTime (see TransactionTime (property) on page 287)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

title (property)

Property of Objects

 document (see document (object) on page 78)

 element (see element (object) on page 80)

 frames (see frames (object) on page 99)

 Image (see Image (object) on page 149)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

JavaScript Reference Guide  285 

 script (see script (object) on page 228)

Description

Stores the title value associated with the parent object.

When working with document objects, a title property is an object that contains the

document title, stored as a text string. When working with window objects, the title is

extracted from the document inside the window. title objects are local to a single

thread. You cannot create new title objects using the JavaScript new operator, but

you can access a document title through the properties and methods of the standard

DOM objects. The properties of title are read-only.

When working with element, link, or location objects, a title property contains

the title of the parent Button, Checkbox, Reset, or Submit element or link object. May

be used as a tooltip string. When working with document objects, a title property is

an object that contains the document title, stored as a text string. When working with

window objects, the title is extracted from the document inside the window.

Syntax

Document object:

Access the title’s properties directly using the following syntax:

document.title.<titleproperty>

Example

Document object:

CurrentDocumentTitle = document.title.string

Properties

Document object:

 string (see string (property) on page 277)

See also

 Collections (on page 27)

 form (see form (object) on page 95)

 Select (on page 230)

Title (function)

Method of Object

 wlVerification (see wlVerification (object) on page 337)

 286  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

This function enables you to validate a HTML Web page’s title.

Syntax

wlVerification.Title(<ExpectedTitle>, <Severity>\<FunctionName>

[, <ErrorMessage>\<FunctionArguments>])

Parameters

Parameter Name Description

ExpectedTitle A user-supplied string that identifies the expected title of the

HTML Web page. If the string you enter in this parameter appears

in the HTML Web page’s title, the validation is successful.

Severity Possible values of this parameter are:

 WLSuccess. The transaction terminated successfully.

 WLMinorError. This specific transaction failed, but the test

session may continue as usual. The script displays a warning

message in the Log window and continues execution from the

next statement.

 WLError. This specific transaction failed and the current test

round was aborted. The script displays an error message in

the Log window and begins a new round.

 WLSevereError. This specific transaction failed and the test

session must be stopped completely. The script displays an

error message in the Log window and the Load Generator on

which the error occurred is stopped.

FunctionName A pre-defined Javascript function that is called if the verification

fails.

[ErrorMessage] string

[FunctionArguments] The arguments for the function that is called if the verification

fails.

Example

For example: when validation fails, an email is sent with a message (errorMessage).

The function sendEmailOnError has the arguments emailAddress and

errorMessage.

function sendEmailOnError(emailAddress, errorMessage)

{

 sendEmailTo(emailAddress, errorMessage)

}

When Title validation fails. The following function is called:

sendEmailOnError(VP@rrrr.com, "Title validation failed");

JavaScript Reference Guide  287 

So the Title function syntax is as follows:

wlVerification.Title("compare title", sendEmailOnError, VP@rrrr.com,

"Title validation failed");

See also

 wlVerification (see wlVerification (object) on page 337)

 PageContentLength (see PageContentLength (property) on page 189)

 PageTime (see PageTime (property) on page 190)

 Severity (see Severity (property) on page 247)

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

TransactionTime (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

Description

Assign a timeout value using the TransactionTime property. Use the TransactionTime

property to set a timeout limit for verification on the maximum transaction time.

GUI mode

WebLOAD recommends setting page verification timeout values through the

WebLOAD Console. Check Page Verification and enter a maximum number of seconds

in the Functional Testing tab of the Default or Current Project Options dialog box,

accessed from the Tools tab of the ribbon.

Syntax

You may also assign a timeout value using the TransactionTime property.

wlGlobals.TransactionTime = TimeValue

Example

The value assigned to TransactionTime may be written in either string or integer

format, where the integer represents the number of milliseconds to wait and the string

represents the decimal fraction of a whole second. Therefore, the following two lines

are equivalent, both setting TransactionTime to one millisecond:

wlGlobals.TransactionTime = 1

-Or-

 288  Chapter 4. WebLOAD Actions, Objects, and Functions

wlGlobals.TransactionTime = “0.001”

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 Transaction Verification Components (on page 36)

 VerificationFunction() (user-defined) (see VerificationFunction() (user-defined)

(function) on page 297)

type (property)

Property of Objects

 element (see element (object) on page 80)

 form (see form (object) on page 95)

 wlHttp (see wlHttp (object) on page 316)

 wlHttp.Data (see Data (property) on page 66)

 wlHttp.DataFile (see DataFile (property) on page 67)

Description

This property is a string that holds the ‘type’ of the parent object.

If the parent is a form element object, then type holds the HTML type attribute of the

form element. For example, an <INPUT> element can have a type of “TEXT”,

“CHECKBOX”, or “RADIO”. Certain HTML form elements, such as <SELECT> do not

have a type attribute. In that case, element.type is the element tag itself, for example

“SELECT”.

Note: The Type value does not change. Even when working with dynamic HTML, the

type of a specific object remains the same through all subsequent transactions with that

object.

If the parent is a wlHttp.Data or wlHttp.DataFile object, then Type holds the

MIME type of the string or form data being submitted through an HTTP Post

command.

JavaScript Reference Guide  289 

Syntax

element:

When working with element objects, use the lowercase form:

<NA>

wlHttp.Data:

When working with wlHttp.Data objects, use the uppercase form:

wlHttp.Data.Type = “application/x-www-form-urlencoded”

Comment

The Type property for wlHttp.Data and wlHttp.DataFile objects is written in

uppercase.

See also

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Header (see Header (property) on page 140)

 Post() (see Post() (method) on page 205)

 value (see value (property) on page 294)

 wlClear() (see wlClear() (method) on page 301)

 wlHttp (see wlHttp (object) on page 316)

Url (property)

Property of Objects

 element (see element (object) on page 80)

 form (see form (object) on page 95)

 frames (see frames (object) on page 99)

 Image (see Image (object) on page 149)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

 290  Chapter 4. WebLOAD Actions, Objects, and Functions

 wlHttp (see wlHttp (object) on page 316)

Description

Sets or retrieves the URL of the parent object on the Web page (read-only). If the parent

object is of type , then this property holds the URL of the image element.

If the parent object is wlGlobals, this property holds the URL address to which the

wlGlobals object connects.

If the parent object is wlMetas, then if httpEquiv=“REFRESH” and the content

property holds a URL, then the URL is extracted and stored in a link object (read-

only).

Example

Area, element, form, frame, image, link, location:

<NA>

wlGlobals:

wlGlobals.Url = “http://www.ABCDEF.com”

wlMetas:

When working with wlMetas objects, use the all-uppercase caps form:

CurrentLink = document.wlMetas[0].URL

Comment

The URL property for area, element, form, frame, image, link, location, and

wlMetas objects is written in all-uppercase caps.

See also

 HTTP Components (on page 24)

 content (see content (property) on page 56)

 httpEquiv (see httpEquiv (property) on page 144)

 Name (see Name (property) on page 174)

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

 wlMetas (see wlMetas (object) on page 320)

JavaScript Reference Guide  291 

UserAgent (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

A user agent is the client application used with a particular network protocol. The

phrase, “user agent” is most commonly used in reference to applications that access the

World Wide Web. Web user agents range from web browsers to search engine crawlers

(“spiders”), as well as mobile phones, etc. The user agent string can be sent as part of

the HTTP request, prefixed with User-agent: or User-Agent:. This string typically

includes information such as the application name, version, host, host operating

system, and language. Some examples of user agent strings can be found at:

http://en.wikipedia.org/wiki/User_agent#Example_user-agent_strings

The UserAgent property is used to define the user agent string for the scope of the

WebLOAD object with which it is associated.

GUI mode

WebLOAD recommends setting user agent values through the WebLOAD Console.

Select a browser type and user agent through the Browser Parameters tab of the

Default or Current Project Options dialog box, accessed from the Tools tab of the

ribbon.

See also

 HTTP Components (on page 24)

UserName (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

The user name that the script uses to log onto a restricted HTTP site. WebLOAD

automatically uses the appropriate access protocol. For example, if a site expects clients

http://en.wikipedia.org/wiki/User_agent#Example_user-agent_strings

 292  Chapter 4. WebLOAD Actions, Objects, and Functions

to use the NT Authentication protocol, the appropriate user name and password will

be stored and sent accordingly.

GUI mode

WebLOAD by default senses the appropriate authentication configuration settings for

the current test session.

If you prefer to explicitly set authentication values, WebLOAD recommends setting

user authentication values through the WebLOAD Console. Enter user authentication

information through the Authentication tab of the Default or Current Session Options

dialog box, accessed from the Tools tab of the ribbon.

Syntax

You may also set user values using the wlGlobals properties. WebLOAD

automatically sends the user name and password when a wlHttp object connects to an

HTTP site. For example:

wlGlobals.UserName = “Bill”

wlGlobals.PassWord = “TopSecret”

Comments

A user is only authenticated once during a round with a set of credentials. Each

subsequent request will use these credentials regardless of what is contained in the

script. If the value of these credentials are changed after authentication, they will only

be used during the next round, not during the current round.

For example, if you are trying to send a request to a URL with a group of users (user1,

user2, and user3), but user1 has already been authenticated, the login is always

performed for user1 until the round is complete.

See also

 HTTP Components (on page 24)

 NTUserName, NTPassWord (see NTUserName, NTPassWord (properties) on

page 176)

UseSameProxyForSSL (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

JavaScript Reference Guide  293 

Description

The UseSameProxyForSSL property can have one of the following values:

 false (default value) – The engine uses the Proxy, ProxyUserName,

ProxyPassWord, ProxyNTUserName, and ProxyNTPassWord properties for both

SSL and non-SSL traffic.

 true – The engine uses the Proxy, ProxyUserName, ProxyPassWord,

ProxyNTUserName, and ProxyNTPassWord properties for non-SSL traffic and the

HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord,

HttpsProxyNTUserName, and HttpsNTPassWord properties for SSL traffic.

This property is used when you are working with a separate SSL proxy.

Note: This property can only be inserted manually.

Example

wlGlobals.UseSameProxyForSSL = false

See also

 HTTP Components (on page 24)

 Security in the WebLOAD Scripting Guide

 HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord (see HttpsProxy,

HttpsProxyUserName, HttpsProxyPassWord (properties) on page 145)

 HttpsProxyNTUserName, HttpsProxyNTPassWord (see HttpsProxyNTUserName,

HttpsProxyNTPassWord (properties) on page 146)

UsingTimer (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

Description

The name of a timer to use for the Get() or Post() method.

Example

WebLOAD zeros the timer immediately before a Get() or Post() call and sends the

timer value to the WebLOAD Console immediately after the call. This is equivalent to

calling the SetTimer() and SendTimer() functions. Thus the following two code

examples are equivalent:

//Version 1

wlHttp.UsingTimer = “Timer1”

 294  Chapter 4. WebLOAD Actions, Objects, and Functions

wlHttp.Get(“http://www.ABCDEF.com”)

//Version 2

SetTimer(“Timer1”)

wlHttp.Get(“http://www.ABCDEF.com”)

SendTimer(“Timer1”)

See also

 HTTP Components (on page 24)

 SendTimer() (see SendTimer() (function) on page 239)

 SetTimer() (see SetTimer() (function) on page 244)

value (property)

Property of Objects

 element (see element (object) on page 80)

 option (see option (object) on page 185)

 wlHeaders (see wlHeaders (object) on page 314)

 wlHttp.Data (see Data (property) on page 66)

 wlHttp.Header (see Header (property) on page 140)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

Description

Sets and retrieves the value associated with the parent object.

When working with elements or options, this property holds the text associated

with this object. This is the value that is returned to the server when a FORM control of

type Button, Checkbox, Radiobutton, Reset, or Submit is submitted. Thus the value

property holds the HTML value attribute of the object (the <OPTION> element). If the

element does not have a value attribute, WebLOAD sets the value property equal to

the text property.

When working with wlHeaders or wlSearchPairs objects, this property holds the

value of the search key.

When working with wlHttp.Data or wlHttp.Header objects, this property holds

the value of the data string being submitted through an HTTP Post command.

Syntax

For elements and options:

<NA>

JavaScript Reference Guide  295 

For wlHeaders:

document.wlHeaders[index#].value = “TextString”

For example:

document.wlHeaders[0].value = “Netscape-Enterprise/3.0F”

For wlSearchPairs:

document.links[1].wlSearchPairs[index#].value = “TextString”

For example:

document.links[1].wlSearchPairs[0].value = “OpticsResearch”

For wlHttp.Header:

wlHttp.Header[“value”] = “TextString”

For wlHttp.Data:

When working with wlHttp.Data objects, use the uppercase form:

wlHttp.Data.Value = “SearchFor=icebergs&SearchType=ExactTerm”

Comment

The Value property for element and wlHttp.Data objects is written in uppercase.

See also

 Collections (on page 27)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 element (see element (object) on page 80)

 Erase (see Erase (property) on page 88)

 FileName (see FileName (property) on page 93)

 form (see form (object) on page 95)

 FormData (see FormData (property) on page 97)

 Get() (see Get() (transaction method) on page 104)

 Header (see Header (property) on page 140)

 Image (see Image (object) on page 149)

 key (see key (property) on page 160)

 option (see option (object) on page 185)

 Post() (see Post() (method) on page 205)

 Select (on page 230)

 296  Chapter 4. WebLOAD Actions, Objects, and Functions

 type (see type (property) on page 288)

 value (see value (property) on page 294)

 wlClear() (see wlClear() (method) on page 301)

 wlHeaders (see wlHeaders (object) on page 314)

 wlHttp (see wlHttp (object) on page 316)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

VCUniqueID() (function)

Description

VCUniqueID() provides a unique identification for the current Virtual Client instance

which is unique system-wide, across multiple Load Generators, even with multiple

spawned processes running simultaneously. Compare this to ClientNum (see

ClientNum (variable) on page 50), which provides an identification number that is only

unique within a single Load Generator. The identification string is composed of a

concatenation of the script name, Load Generator name, current thread number, and

round number.

Syntax

VCUniqueID()

Return Value

Returns a unique identification string for the current Virtual Client instance.

Example

InfoMessage(VCUniqueID())

The results are

j@chaimsh.0.1

where:

 j is the name of the script.

 chaimsh is the name of the Load Generator.

 0 is the client number.

 1 is the round number.

See also

 ClientNum (see ClientNum (variable) on page 50)

 GeneratorName() (see GeneratorName() (function) on page 101)

JavaScript Reference Guide  297 

 GetOperatingSystem() (see GetOperatingSystem() (function) on page 131)

 Identification Variables and Functions (on page 29)

 RoundNum (see RoundNum (variable) on page 222)

VerificationFunction() (user-defined) (function)

Description

User-defined verification function to be used with a ‘named’ transaction. A function

written by the user, tailored to the specific testing and verification needs of the

application being tested.

Syntax

UserDefinedVerificationFunction(specified by user)

{

…

<any valid JavaScript code>

return value

}

Parameters

Specified by user.

Return Value

The user-defined Verification() function returns a value based on user-specified

criterion. You define the success and failure criterion for user-defined transactions. You

also determine the severity level of any failures. The severity level determines the

execution path when the main script resumes control. Less severe failures may be

noted and ignored. More severe failures may cause the whole test to be aborted.

Set the severity level in the verification function return statement. All failures are

logged and displayed in the Log Window, similar to any other WebLOAD test failure.

Refer to the WebLOAD Console User’s Guide for more information on return values and

error codes. Transactions may be assigned one of the following return values:

 WLSuccess – The transaction terminated successfully.

 WLMinorError – This specific transaction failed, but the test session may continue

as usual. The script displays a warning message in the Log window and continues

execution from the next statement.

 WLError – This specific transaction failed and the current test round was aborted.

The script displays an error message in the Log window. If you are working with

 298  Chapter 4. WebLOAD Actions, Objects, and Functions

WebLOAD, a new round is begun only if WebLOAD is configured for multiple

iterations.

 WLSevereError – This specific transaction failed and the test session must be

stopped completely. The script displays an error message in the Log window. If

you are working with WebLOAD Recorder, the test session is stopped. If you are

working with WebLOAD, the Load Generator on which the error occurred is

stopped.

The default return value is WLSuccess. If no other return value is specified for the

transaction, the default assumption is that the transaction terminated successfully.

Example

The following sample verification function checks if the current title of the Web

page matches the page title expected at this point. (In this case, the function looks for a

match with a Google page.)

function Transaction1_VerificationFunction()

{

InfoMessage(document.title)

if(document.title.indexOf(“Google”)>0)

return WLSuccess

else

return WLMinorError

}

Comment

All functions must be declared in the script before they can be called.

For a more complete explanation and examples of functional testing and transaction

verification, see the WebLOAD Scripting Guide.

See also

 BeginTransaction() (see BeginTransaction() (function) on page 42)

 CreateDOM() (see CreateDOM() (function) on page 63)

 CreateTable() (see CreateTable() (function) on page 65)

 EndTransaction() (see EndTransaction() (function) on page 88)

 ReportEvent() (see ReportEvent() (function) on page 218)

 SetFailureReason() (see SetFailureReason() (function) on page 243)

 TimeoutSeverity (see TimeoutSeverity (property) on page 283)

 TransactionTime (see TransactionTime (property) on page 287)

 Transaction Verification Components (on page 36)

JavaScript Reference Guide  299 

Version (property)

Property of Objects

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

 wlLocals (see wlLocals (object) on page 319)

Description

Stores the HTTP version number for the current test session. Current supported

versions include 1.0 and 1.1.

GUI mode

WebLOAD recommends selecting an HTTP version through the WebLOAD Console.

Click the appropriate version number radio button in the HTTP Parameters tab of the

Default or Current Session Options dialog box, accessed from the Tools tab of the

ribbon.

See also

 HTTP Components (on page 24)

WarningMessage() (function)

Description

Use this function to display a warning message in the Log window.

Syntax

WarningMessage(msg)

Parameters

Parameter Name Description

msg A string with a warning message to be sent to the Log window.

Comment

If you call WarningMessage() in the main script, WebLOAD sends a warning

message to the Log window and continues with script execution as usual. The message

has no impact on the continued execution of the test session.

GUI mode

WebLOAD recommends adding message functions to your script files directly through

the WebLOAD Recorder. Drag the Message icon from the WebLOAD Recorder toolbox

 300  Chapter 4. WebLOAD Actions, Objects, and Functions

into the script. The Message dialog box opens. Enter the message text, select the

WLMinorError severity level for the message, and click OK.

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlException (see wlException (object) on page 306)

 wlException() (see wlException() (constructor) on page 308)

window (object)

Property of Object

 frames (see frames (object) on page 99)

Description

The window object represents an open browser window. window objects store the

complete parse results for downloaded HTML pages. Use the window object to gain

access to the document in the window. From the window properties you can retrieve

the document itself, check the location, and access other subframes that are nested

within that window. Typically, the browser creates a single window object when it

opens an HTML document. However, if a document defines one or more frames the

browser creates one window object for the original document and one additional

window object (a child window) for each frame. The child window may be affected by

actions that occur in the parent. For example, closing the parent window causes all

child windows to close.

Note: The 'parent' window item is usually implicitly understood when accessing the

HTML document information.

window objects are also accessed through nested frames, where the frame object's

window property points to a child window nested within the given frame (read-only).

JavaScript Reference Guide  301 

Example

When working with multiple child windows of a frames collection, access the first

child window using the following expressions:

frames[0]

-Or-

document.frames[0]

Access the properties (document, location, or frames) of the first child window with

the following expressions:

frames[0].<child-property>

-Or-

document.frames[0].<child-property>

For example:

frames[0].location

-Or-

document.frames[0].location

Properties

 document (see document (object) on page 78)

 location (see location (object) on page 168)

 Name (see Name (property) on page 174)

 title (see title (property) on page 355)

 Url (see Url (property) on page 363)

See also

 Collections (on page 27)

wlClear() (method)

Method of Objects

The wlHttp object includes the following collections for storing data. These data

storage collections each include the method wlClear().

 wlHttp.Data (see Data (property) on page 66)

 wlHttp.DataFile (see DataFile (property) on page 67)

 wlHttp.FormData (see FormData (property) on page 97)

 wlHttp.Header (see Header (property) on page 140)

 302  Chapter 4. WebLOAD Actions, Objects, and Functions

Description

wlClear() is used to clear property values from the specified wlHttp data collection.

Syntax

wlHttp.DataCollection.wlClear([FieldName])

Parameters

[FieldName]-An optional user-supplied string with the name of the field to be

cleared.

Example

If called with no parameters, then all values set for the collection are cleared:

wlHttp.FormData[“a”] = “DDD”

wlHttp.FormData[“B”] = “FFF”

wlHttp.FormData.wlClear()

// Clear all value from all fields in FormData

InfoMessage (wlHttp.FormData[“a”])

// This statement has no meaning, since there

// is currently no value assigned to “a”

If wlClear() is passed a FieldName parameter, then only the value of the specified

field is cleared:

wlHttp.FormData.wlClear(“FirstName”)

// Clears only value assigned to “FirstName”

See also

 Collections (on page 27)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 FormData (see FormData (property) on page 97)

 Header (see Header (property) on page 140)

 wlHttp (see wlHttp (object) on page 316)

wlCookie (object)

Description

The wlCookie object gets, sets and deletes cookies. These activities may be required

by an HTTP server.

JavaScript Reference Guide  303 

Note: Cookie management is usually handled automatically through the standard

DOM document.cookie property.

WebLOAD supports the wlCookie object as an alternate approach to cookie

management. You may use the methods of wlCookie to create as many cookies as

needed. For example, each WebLOAD client running a script can set its own cookie

identified by a unique name. wlCookie is a local object. WebLOAD automatically

creates an independent wlCookie object for each thread of a script. You cannot

manually declare wlCookie objects yourself.

By default, WebLOAD always accepts cookies that are sent from a server. When

WebLOAD connects to a server, it automatically submits any cookies in the server’s

domain that it has stored. The wlCookie object lets you supplement or override this

behavior in the following ways:

 A thread can create its own cookies.

 A thread can delete cookies that it created.

 A thread can get the value of a cookie that is created.

Aside from these two abilities, WebLOAD does not distinguish in any way between

cookies that it receives from a server and those that you create yourself. For example, if

a thread creates a cookie in a particular domain, it automatically submits the cookie

when it connects to any server in the domain.

Note: This property can only be inserted manually.

Syntax

wlCookie.method()

Example

//Set a cookie

wlCookie.Set(“CUSTOMER”, “JOHN_SMITH”, “www.ABCDEF.com”,

 “/”, “Wed, 08-Apr-98 17:29:00 GMT”)

//WebLOAD submits the cookie

wlHttp.Get(“www.ABCDEF.com/products/OrderForm.cgi”)

//Get the value of a cookie

retValue = wlCookie.Get(“CUSTOMER”, “www.ABCDEF.com”, “/”)

//Delete the cookie

wlCookie.ClearAll()

Methods

 ClearAll() (see ClearAll() (method) on page 48)

 Delete() (see Delete() (cookie method) on page 75)

 Set() (see Set() (cookie method) on page 241)

 Get() (see Get() (cookie method) on page 103)

http://www.abcdef.com/

 304  Chapter 4. WebLOAD Actions, Objects, and Functions

wlDataFileField (method)

Description

WLDataFileField creates the data file field parameter.

Syntax

fileFieldParam = WLDataFileField(paramName, ColumnNumber);

Parameters

Parameter Name Description

paramName File parameter ID, returned by WLDataFileParam.

ColumnNumber File column number.

wlDataFileParam() (parameterization)

Description

Define a data file parameter.

Syntax

<paramName> = wlDataFileParam(FileID, CopyFileId, HeaderLines,

Delimiter, AccessMethod, Scope, UsageMethod, EndOfFileBehavior);

Parameters

Parameter Name Description

FileID A string which is a unique parameter identifier.

CopyFileId An identifier which refers to the local file. This value is returned

by the CopyFile command.

HeaderLines A parameter that defines the number of header lines the file

contains. All values are enumerated numeric values. Possible

values are:

 0. The file does not contain any header lines. This is the

default value.

 <X>. Where <X> is any number above zero. The file contains

<X> header lines at the beginning of the file. The values

contained in these header lines are not used as parameters but

as variable names in the JavaScript code.

Delimiter Character used to separate fields in one line of the input file. The

default delimiter character is a comma.

JavaScript Reference Guide  305 

Parameter Name Description

AccessMethod Defines the method for reading the next row from the file. All

values are enumerated numeric values. Possible values are:

 WLParamRandom. Gets a random row from the file.

 WLParamOrdered. Every client gets the next row from the file

(order is important).

 WLParamNotOrdered. Every client gets the next row from

the file (order is not important).

Scope Defines the scope (sharing policy) of the parameter. Possible

values are:

 WLParamGlobal. All virtual clients read rows from the

shared (global) pool.

 WLParamLocal. Each virtual client reads rows from its own

copy of the pool.

 WLParamGlobalLocked. All virtual clients read a unique

row from the global pool, which is shared by all virtual clients

on all load generators.

UsageMethod Defines when the parameter is updated, meaning when a new

value will be read. Possible values are:

 WLParamUpdateRound. The script reads a new row from the

file one time for each round. Using the same parameter again

in the same round will result in the same value.

 WLParamUpdateOnce. The script reads a new row from the

file once at the beginning of the test (in InitClient). Every

usage of the parameter by that Virtual Client will always

result in the same value.

 WLParamUpdateUse. The parameter’s value will be read each

time it is used.

EndOfFileBehavior Defines how WebLOAD behaves when it reaches the end of the

file. All values are enumerated numeric values.

 WLParamKeepLast. Keep the last value.

 WLParamCycle. Start from the beginning of the file. Each row

can be used any number of times.

 WLParamStopVC. Abort the specific Virtual Client that tried

to read past the end of the file. An error message is written to

the log file.

Example

function InitAgenda()

{

myFileParam_File = CopyFile("C:\\My

Documents\\WebLOAD\\Sessions\\param1.txt")

}

function InitClient()

 306  Chapter 4. WebLOAD Actions, Objects, and Functions

{

myFileParam_DataFileParam = wlDataFileParam (

"myFileParam",myFileParam_File,

1,",",wlParamRandom,WLParamGlobalLocked,wlParamUpdateRound,wlParamCycl

e);

myFileParam_col1 = wlDataFileField(myFileParam_DataFileParam, 1);

myFileParam_col2 = wlDataFileField(myFileParam_DataFileParam, 2);

}

/***** WLIDE - Message - ID:4 *****/

InfoMessage(myFileParam_col1.getValue())

 // END WLIDE

/***** WLIDE - Message - ID:5 *****/

InfoMessage(myFileParam_col2.getValue())

Methods

 wlDataFileField() (see wlDataFileField (method)on page 304)

wlException (object)

Description

script scripts that encounter an error during runtime do not simply fail and die. This

would not be helpful to testers who are trying to analyze when, where, and why an

error in their application occurs. WebLOAD scripts incorporate a set of error

management routines to provide a robust error logging and recovery mechanism

whenever possible. The wlException object is part of the WebLOAD error

management protocol.

WebLOAD users have a variety of options for error recovery during a test session. The

built-in error flags provide the simplest set of options; an informative message, a

simple warning, stop the current round and skip to the beginning of the next round, or

stop the test session completely. Users may also use try()/catch() commands to

enclose logical blocks of code within a round. This provides the option of catching any

minor errors that occur within the enclosed block and continuing with the next logical

block of code within the current round, rather than skipping the rest of the round

completely.

Users may add their own try()/catch() pairs to a script, delimiting their own

logical code blocks and defining their own alternate set of activities to be executed in

case an error occurs within that block. If an error is caught while the script is in the

middle of executing the code within a protected logical code block (by try()),

JavaScript Reference Guide  307 

WebLOAD will detour to a user-defined error function (the catch() block) and then

continue execution with the next navigation block in the script.

wlException objects store information about errors that have occurred, including

informative message strings and error severity levels. Users writing error recovery

functions to handle the errors caught within a try()/catch() pair may utilize the

wlException object. Use the wlException methods to perhaps send error

messages to the Log Window or trigger a system error of the specified severity level.

Example

The following code fragment illustrates a typical error-handling routine:

try{

...

//do a lot of things

...

//error occurs here

...

}

catch(e){

myException = new wlException(e,“we have a problem”)

//things to do in case of error

if (myException.GetSeverity() == WLError) {

// Do one set of Error activities

myException.ReportLog()

throw myException

}

else {

// Do a different set of Severe Error activities

throw myException

}

}

Methods

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 ReportLog() (see ReportLog() (method) on page 219)

 wlException() (see wlException() (constructor) on page 308)

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 InfoMessage() (see InfoMessage() (function) on page 153)

 308  Chapter 4. WebLOAD Actions, Objects, and Functions

 Message Functions (on page 30)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

wlException() (constructor)

Method of Object

 wlException (see wlException (object) on page 306)

Description

Creates a new wlException object.

Syntax

NewExceptionObject = new wlException(severity, message)

Parameters

Parameter Name Description

severity One of the following integer constants:

 WLError. This specific transaction failed and the current test

round was aborted. The script displays an error message in

the Log window and begins a new round.

 WLSevereError. This specific transaction failed and the test

session must be stopped completely. The script displays an

error message in the Log window and the Load Generator on

which the error occurred is stopped.

message The exception message stored as a text string.

Return Value

Returns a new wlException object.

Example

myUserException=new wlException(WLError, “Invalid date”)

See also

 ErrorMessage() (see ErrorMessage() (function) on page 90)

 GetMessage() (see GetMessage() (method) on page 129)

 GetSeverity() (see GetSeverity() (method) on page 134)

 InfoMessage() (see InfoMessage() (function) on page 153)

 Message Functions (on page 30)

JavaScript Reference Guide  309 

 ReportLog() (see ReportLog() (method) on page 219)

 SevereErrorMessage() (see SevereErrorMessage() (function) on page 246)

 Using the IntelliSense JavaScript Editor (on page 18)

 WarningMessage() (see WarningMessage() (function) on page 299)

wlGeneratorGlobal (object)

Description

WebLOAD provides a global object called wlGeneratorGlobal. The

wlGeneratorGlobal object enables sharing of global variables and values between

all threads of a single Load Generator, even when running multiple scripts. (Compare

to the wlSystemGlobal (see wlSystemGlobal (object) on page 332)object, which enables

sharing of global variables and values system-wide, between all threads of all Load

Generators participating in a test session, and to the wlGlobals (see wlGlobals (object) on

page 313) object, which enables sharing of global variables and values between threads

of a single script, running on a single Load Generator.)

Globally shared variables are useful when tracking a value or maintaining a count

across multiple threads or platforms. For example, you may include these shared

values in the messages sent to the Log window during a test session.

WebLOAD creates exactly one wlGeneratorGlobal object for each Load Generator

participating in a test session. Use the wlGeneratorGlobal methods to create and

access variable values that you wish to share between threads of a Load Generator.

Edit wlGeneratorGlobal properties and methods through the IntelliSense editor,

described in Using the IntelliSense JavaScript Editor (on page 18). While global variables

may be accessed anywhere in your script, be sure to initially declare

wlGeneratorGlobal values in the InitAgenda() function only. Do not define new

values within the main body of a Script, for they will not be shared correctly by all

threads.

Methods

The wlGeneratorGlobal object includes the following methods:

 Add() (see Add() (method) on page 39)

 Get() (see Get() (addition method) on page 102)

 Set() (see Set() (addition method) on page 240)

 310  Chapter 4. WebLOAD Actions, Objects, and Functions

Properties

wlGeneratorGlobal incorporates a dynamic property set that consists of whatever

global variables have been defined, set, and accessed by the user through the

wlGeneratorGlobal method set only.

See also

 wlSystemGlobal (see wlSystemGlobal (object) on page 332)

wlGet() (method)

Method of Object

Each of the different types of collections of elements found in the parsed DOM tree

includes the method wlGet().

Description

wlGet() is used when getting data from a property in the collection to distinguish

between keywords and user-defined variables that share the same names. The need for

this care is explained in this section.

Syntax

Collection.wlGet(PropertyName)

Parameters

Parameter Name Description

PropertyName A string with the name of the property whose value is to be

gotten.

Return Value

The value of the specified property

Example

document.forms[0].elements.wlGet(“FirstName”)

Comment

In JavaScript, users may work interchangeably with either an array[index] or

array.index notation. For example, the following two references are

interchangeable:

wlHttp.FormData[“Sunday”]

-Or-

wlHttp.FormData.Sunday

JavaScript Reference Guide  311 

This flexibility is convenient for programmers, who are able to select the syntax that is

most appropriate for the context. However, it could potentially lead to ambiguity. For

example, assume a website included a form with a field called length. This could lead

to a confusing situation, where the word length appearing in a script could represent

either the number of elements in a FormData array, as explained in length, or the

value of the length field in the form. Errors would arise from a reasonable

assignment statement such as:

wlHttp.FormData[“length”] = 7

This is equivalent to the illegal assignment statement:

wlHttp.FormData.length = 7

WebLOAD therefore uses wlGet() to retrieve field data whenever the name could

lead to potential ambiguity. When recording scripts with WebLOAD Recorder,

WebLOAD recognizes potential ambiguities and inserts the appropriate wlGet()

statements automatically.

See also

 Collections (on page 27)

 wlHttp (see wlHttp (object) on page 316)

wlGetAllForms() (method)

Method of Object

 document (see document (object) on page 78)

Description

Retrieve a collection of all forms (<FORM> elements) in an HTML page and its nested

frames.

Syntax

wlGetAllForms()

Return Value

A collection that includes the forms in the top-level frame (from which you called the

method) and all its subframes at any level of nesting.

See also

 HTTP Components (on page 24)

 312  Chapter 4. WebLOAD Actions, Objects, and Functions

wlGetAllFrames() (method)

Method of Object

 document (see document (object) on page 78)

Description

Retrieve a collection of all frames in an HTML page, at any level of nesting.

Syntax

wlGetAllFrames()

Return Value

A collection that includes the top-level frame (from which you called the method) and

all its subframes.

See also

 HTTP Components (on page 24)

wlGetAllLinks() (method)

Method of Object

 document (see document (object) on page 78)

Description

Retrieve a collection of all links (<A> elements) in an HTML page and its nested

frames.

Syntax

wlGetAllLinks()

Return Value

A collection that includes links in the top-level frame (from which you called the

method) and all its subframes at any level of nesting.

See also

 HTTP Components (on page 24)

JavaScript Reference Guide  313 

wlGlobals (object)

Description

The wlGlobals object stores the default global configuration properties set by the

user through the WebLOAD Recorder or Console, including properties defining

expected dialog boxes, verification test selections, and dynamic state management.

wlGlobals is a global object, whose property values are shared by all threads of a

script running on a single Load Generator. The wlGlobals object enables sharing of

user-defined global variables and values between threads of a single script, running on

a single Load Generator. (Compare to the wlGeneratorGlobal (see wlGeneratorGlobal

(object) on page 309) object, which enables sharing of global variables and values

between all threads of a single Load Generator, and the wlSystemGlobal (see

wlSystemGlobal (object) on page 332) object, which enables sharing of global variables

and values system-wide, between all threads of all Load Generators participating in a

test session.)

Note: Most global configuration property values and user-defined variables should be

set through the WebLOAD Recorder or Console. The property descriptions here are

intended mainly to explain the lines of code seen in the JavaScript View of the

WebLOAD Recorder desktop. Syntax details are also provided for the benefit of users

who prefer to manually edit the JavaScript code of their scripts through the IntelliSense

editor, described in Using the IntelliSense JavaScript Editor (on page 18). If you do decide

to edit the global variable values in your script, set wlGlobals properties in the

InitAgenda() function only. Do not define new values within the main body of a

script. The values will not be shared correctly by all script threads.

The configuration properties of the wlGlobals object are almost all duplicated in the

wlLocals (see wlLocals (object) on page 319), which contains the local configuration

settings for browser actions, and in the wlHttp (see wlHttp (object) on page 316), which

contains configuration settings that are limited to a single specific browser action. To

understand how there could potentially be three different settings for a single

configuration property, see the WebLOAD Scripting Guide.

Properties

The wlGlobals object includes the following property classes:

 Automatic State Management for HTTP Protocol Mode (on page 24)

 HTTP Components (on page 24)

 Transaction Verification Components (on page 36)

Syntax

Each individual property class includes the syntax specifications that apply to that

class.

 314  Chapter 4. WebLOAD Actions, Objects, and Functions

GUI mode

The wlGLobals, property and method descriptions explain how to explicitly set

values for these session configuration properties within your JavaScript script files.

The recommended way to set configuration values is through the WebLOAD Recorder,

using the Default, Current, and Global Options dialog boxes accessed from the Tools

tab in the Console desktop ribbon. The dialog boxes provide a means of defining and

setting configuration values with ease, simplicity, and clarity.

See also

 wlHttp (see wlHttp (object) on page 316)

 wlGeneratorGlobal (see wlGeneratorGlobal (object) on page 309)

 wlLocals (see wlLocals (object) on page 319)

 wlSystemGlobal (see wlSystemGlobal (object) on page 332)

wlHeaders (object)

Property of Objects

Headers on a Web page are accessed through wlHeaders objects that are grouped

into collections of wlHeaders. The wlHeaders collection is a property of the

following objects:

 document (see document (object) on page 78)

Description

Each wlHeaders object contains a key-value pair. wlHeaders objects provide access

to the key/value pairs in the HTTP response headers. (Information found in request

headers is available through the wlHttp.Header property. For key-value pairs found

in URL search strings, see wlSearchPairs (object) (on page 327).)

wlHeaders objects are local to a single thread. You cannot create new wlHeaders

objects using the JavaScript new operator, but you can access them through the

properties and methods of the standard DOM objects. wlHeaders properties are read

only.

Syntax

wlHeaders objects are grouped together within collections of wlHeaders. To access

an individual wlHeaders’s properties, check the length property of the wlHeaders

collection and use an index number to access the individual wlHeaders object, with

the following syntax:

JavaScript Reference Guide  315 

NumberofHeaderObjects = document.wlHeaders.length

document.wlHeaders[index#].<wlHeaders-property>

Example

WebLOAD stores the header pairs from the response to the most recent Get, Post, or

Head command in the document.wlHeaders collection. The following statement

would retrieve an HTTP header:

wlHttp.Head(“http://www.ABCDEF.com”)

For a header that looks something like this:

HTTP/1.1 200 OK

Server: Netscape-Enterprise/3.0F

Date: Sun, 11 Jan 1998 08:25:20 GMT

Content-type: text/html

Connection: close

Host: Server2.MyCompany.com

WebLOAD parses the header pairs as follows:

document.wlHeaders[0].key = “Server”

document.wlHeaders[0].value = “Netscape-Enterprise/3.0F”

document.wlHeaders[1].key = “Date”

document.wlHeaders[1].value = “Sun, 11 Jan 1998 08:25:20 GMT”

...

Properties

The wlHeaders object includes the following properties:

 key (see key (property) on page 160)

 value (see value (property) on page 294)

See also

 Collections (on page 27)

 Header (see Header (property) on page 140)

 wlSearchPairs (see wlSearchPairs (object) on page 327)

wlHtml (object)

Description

If your script downloads HTML code, you can use the wlHtml object to retrieve

parsed elements of the code. The wlHtml object also lets you retrieve the HTTP header

fields and status and parse URL addresses into their host, port, and URI components.

 316  Chapter 4. WebLOAD Actions, Objects, and Functions

wlHtml is a local object. WebLOAD automatically creates an independent wlHtml

object for each thread of a script. You cannot manually declare wlHtml objects

yourself.

Methods

 GetFieldValue() (see GetFieldValue() (method) on page 113)

 GetFieldValueInForm() (see GetFieldValueInForm() (method) on page 114)

 GetFormAction() (see GetFormAction() (method) on page 115)

 GetFrameByUrl() (see GetFrameByUrl() (method) on page 116)

 GetFrameUrl() (see GetFrameUrl() (method) on page 117)

 GetHeaderValue() (see GetHeaderValue() (method) on page 118)

 GetHost() (see GetHost() (method) on page 119)

 GetHostName() (see GetHostName() (method) on page 120)

 GetLinkByName() (see GetLinkByName() (method) on page 127)

 GetLinkByUrl() (see GetLinkByUrl() (method) on page 128)

 GetPortNum() (see GetPortNum() (method) on page 132)

 GetQSFieldValue() (see GetQSFieldValue() (method) on page 133)

 GetStatusLine() (see GetStatusLine() (method) on page 135)

 GetStatusNumber() (see GetStatusNumber() (method) on page 136)

 GetUri() (see GetUri() (method) on page 137)

wlHttp (object)

Description

The wlHttp object stores configuration information for immediate user activities,

including properties defining expected dialog boxes, verification test selections, and

dynamic state management. Many of these properties are duplicated in the wlGlobals

(see wlGlobals (object) on page 313), which contains the default global configuration

settings for browser actions, and in the wlLocals (see wlLocals (object)on page 319),

which contains the local configuration settings for browser actions. To understand how

there could potentially be three different settings for a single configuration property,

see the WebLOAD Scripting Guide. The wlHttp object also contains the methods that

implement the user activities saved during the WebLOAD Recorder recording session.

User activities may be recreated through one of two approaches: the high-level User

Action mode or the low-level HTTP Protocol mode. Methods for each of these testing

modes are included in the wlHttp object.

JavaScript Reference Guide  317 

Properties and Methods

The wlHttp object includes the following property and method classes:

 Automatic State Management for HTTP Protocol Mode (on page 24)

 HTTP Components (on page 24)

 Transaction Verification Components (on page 36)

Syntax

Each individual function class includes the syntax specifications that apply to that

class.

GUI mode

The wlHttp property and method descriptions explain how to explicitly set values for

these session configuration properties within your JavaScript script files.

Note: The recommended way to set configuration values is through the WebLOAD

Recorder, using the Default, Current, and Global Options dialog boxes accessed from

the Tools tab in the Console desktop ribbon. The dialog boxes provide a means of

defining and setting configuration values with ease, simplicity, and clarity.

See also

 wlGlobals (see wlGlobals (object) on page 313)

 wlLocals (see wlLocals (object) on page 319)

wlInputFile (object)

Description

The wlInputFile object supports reading values from an external text file. This is

useful when you need to parameterize your script. The input file supports the

following access methods:

 Unique access to a parameters file’s record. This ensures that a value that was read

by VC1 will not be read by any other VC as long as VC1 is using this value.

 Shared access for a parameters file among Load Generators and Load Machines

and among different scripts.

 Sequential and random access to a parameters file.

The wlInputFile object enables Load Generators running on more than one load

machine to access a single parameters file in a way that enables unique reading of the

parameters from the file. In addition, a single parameters file can be accessed by more

 318  Chapter 4. WebLOAD Actions, Objects, and Functions

than one script in a way that enables unique reading of parameters from the file by all

of the scripts.

Create wlInputFile objects and manage your files using the constructor and

methods described in this section.

Syntax

MyFileObj = new wlInputFile(fileID)

Parameters

Parameter Name Description

fileID An identifier which refers to the local file. This value is returned

by the CopyFile command.

Example

fileID = CopyFile(<full path>)

…

MyFileObj = new wlInputFile(fileID)

…

MyFileObj.Open([AccessMethod], [ShareMethod], [UsageMethod],

[EndOfFileBehavior], [HeaderLines])

Methods

 Open() (see Open() (method) on page 180)

 GetLine() (see GetLine() (function) on page 123)

See also

 Using the IntelliSense JavaScript Editor (on page 18)

 CopyFile() (see CopyFile() (function) on page 61)

wlInputFile() (constructor)

Method of Object

 wlInputFile (see wlInputFile (object) on page 317)

Description

Creates a new wlInputFile object. For optimal performance, construct a new file

object in the InitClient section of your script. The file is copied from the Console to

the Load Generator. The input file specified in the wlInputFile object is opened.

Syntax

myFileObj = new wlInputFile(fileID)

JavaScript Reference Guide  319 

Parameters

Parameter Name Description

fileID An identifier which refers to the local file. This value is returned

by the CopyFile command.

Return Value

A pointer to a new wlInputFile object.

Example

fileID = CopyFile(<full path>)

…

MyFileObj = new wlInputFile(fileID)

…

MyFileObj.Open([AccessMethod], [ShareMethod], [UsageMethod],

[EndOfFileBehavior], [HeaderLines])

wlLocals (object)

Description

The wlLocals object stores the local default configuration information for user

activities, such as the URL, user name and password, proxy server, and dialog box

management. wlLocals is a local object. WebLOAD creates an independent

wlLocals object for each thread of a script. You cannot declare wlLocals objects

yourself.

The properties of the wlLocals object are all duplicated in the wlGlobals (see

wlGlobals (object) on page 313), which contains the default global settings, and in the

wlHttp (see wlHttp (object) on page 316), which contains the settings for an immediate

action. To understand how there could potentially be three different settings for a

single configuration property, see the WebLOAD Scripting Guide.

Properties

The wlLocals object includes the following property classes:

 Automatic State Management for HTTP Protocol Mode (on page 24)

 HTTP Components (on page 24)

 Transaction Verification Components (on page 36)

Syntax

Each individual function class includes the syntax specifications that apply to that

class.

 320  Chapter 4. WebLOAD Actions, Objects, and Functions

GUI mode

The wlLocals property and method descriptions explain how to explicitly set values

for these session configuration properties within your JavaScript script files.

Note: The recommended way to set configuration values is through the WebLOAD

Recorder, using the Default, Current, and Global Options dialog boxes accessed from

the Tools tab in the Console desktop ribbon. The dialog boxes provide a means of

defining and setting configuration values with ease, simplicity, and clarity.

See also

 wlGlobals (see wlGlobals (object) on page 313)

 wlHttp (see wlHttp (object) on page 316)

wlMetas (object)

Property of Objects

META objects on a Web page are accessed through wlMetas objects that are grouped

into collections of wlMetas. The wlMetas collection is a property of the following

objects:

 document (see document (object) on page 78)

Description

Each wlMetas object stores the parsed data for an HTML meta object (<META> tag).

wlMetas objects are local to a single thread. You cannot create new wlMetas objects

using the JavaScript new operator, but you can access them through the properties

and methods of the standard DOM objects. wlMetas properties are read only.

Syntax

wlMetas objects are grouped together within collections of wlMetas. To access an

individual wlMetas’s properties, check the length property of the wlMetas collection

and use an index number to access the individual wlMetas object, with the following

syntax:

NumberofMetaObjects = document.wlMetas.length

document.wlMetas[#].<wlMetas-property>

Example

To find out how many wlMetas objects are contained within a document header,

check the value of:

document.wlMetas.length

JavaScript Reference Guide  321 

Access each wlMetas’s properties directly using the preceding syntax. For example:

document.wlMetas[0].key

Properties

The wlMetas object includes the following properties:

 content (see content (property) on page 56)

 httpEquiv (see httpEquiv (property) on page 144)

 Name (see Name (property) on page 172)

 Url (see Url (property) on page 289)

See also

 Collections (on page 27)

wlNumberParam() (parameterization)

Description

Define a number parameter.

Syntax

paramName = wlNumberParam (ParamID, MinValue, MaxValue,Step,

AccessMethod, Scope, UsageMethod, OutOfValuesBehavior);

Parameters

Parameter Name Description

ParamID A string that is a unique parameter identifier.

MinValue The minimum value of the number range.

MaxValue The maximum value of the number range.

Step The increment between numbers.

AccessMethod Defines the method for calculating the next value from the range.

All values are enumerated numeric values. Possible values are:

 wlParamRandom. Gets a random value from the range.

 wlParamOrdered. Every client gets the next value from the

range (order is important).

 wlParamNotOrdered. Every client gets the next value from

the range (order is not important).

 322  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameter Name Description

Scope Defines the scope (sharing policy) of the parameter. Possible

values are:

 wlParamGlobal. All virtual clients read values from the

shared (global) pool.

 wlParamLocal. Each virtual client reads values from its own

pool.

 wlParamGlobalLocked. All virtual clients read unique

values from the shared (global) pool.

Usage Method Defines when the parameter is updated, meaning when a new

value will be read. Possible values are:

 WLParamUpdateRound. The script reads a new value from

the file once for each round. Using the same parameter again

in the same round will result in the same value.

 WLParamUpdateOnce. The script reads a new value from the

file once at the beginning of the test (in InitClient). All

usage of the parameter by that Virtual Client will always

result in the same value.

 WLParamUpdateUse. The parameter’s value will be read each

time it is used.

OutOfValuesBehavior Defines how WebLOAD behaves when it reaches the end of the

range. All values are enumerated numeric values. Possible values

are:

 WLParamKeepLast. Keep the last value.

 WLParamCycle. Start from the beginning of the range.

 WLParamStopVC. Abort the specific Virtual Client that tried

to read past the end of the range. An error message is written

to the log file.

Example

function InitClient()

{

NewParam1 = wlNumberParam("NewParam1",1, 100, 1, wlParamRandom,

wlParamLocal, wlParamUpdateRound, wlParamCycle);

}

/***** WLIDE - Message - ID:3 *****/

InfoMessage(NewParam1.getValue())

 // END WLIDE

JavaScript Reference Guide  323 

wlOutputFile (object)

Description

The wlOutputFile object writes script output messages to a global output file. Create

wlOutputFile objects and manage your files using the constructor and methods

described in this section.

Syntax

MyFileObj = new wlOutputFile(“filename”)

…

MyFileObj.Write(“Happy Birthday”)

…

delete MyFileObj

Example

Each individual property includes examples of the syntax for that property.

Methods

 Close() (see Close() (function) on page 52)

 remove() (see remove() (method) on page 74)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 wlOutputFile() (see wlOutputFile() (constructor) on page 324)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

Comment

You may also use the WebLOAD functions listed here to open and close output files.

 To open an output file:

Open(filename)

 To close an output file:

Close(filename)

When you use the Close() function to close a file data will be flashed to the disk.

 324  Chapter 4. WebLOAD Actions, Objects, and Functions

Note: Declaring a new wlOutputFile object creates a new, empty output file. If a file

of that name already exists, the file will be completely overwritten. Information will

not be appended to the end of an existing file. Be sure to choose a unique filename for

the new output file if you do not want to overwrite previous script data.

If you declare a new wlOutputFile object in the InitAgenda() function of a script,

the output file will be shared by all the script threads. There is no way to specify a

specific thread writing sequence-each thread will write to the output file in real time as

it reaches that line in the script execution.

If you declare a new wlOutputFile object in the InitClient() function or main

body of a script, use the thread number variable as part of the new filename to be sure

that each thread will create a unique output file.

If you declare a new wlOutputFile object in the main body of a script, and then run

your script for multiple iterations, use the RoundNum variable as part of the new

filename to be sure that each new round will create a unique output file.

Generally, you should only create new wlOutputFile objects in the InitAgenda()

or InitClient() functions of a script, not in the main script. If a statement in the

main script creates an object, a new object is created each time the statement is executed. If

WebLOAD repeats the main script many times, a large number of objects may be

created and the system may run out of memory.

See also

 CopyFile() (see CopyFile() (function) on page 61)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Using the IntelliSense JavaScript Editor (on page 18)

wlOutputFile() (constructor)

Method of Object

 wlOutputFile (see wlOutputFile (object) on page 323)

Description

To create a new wlOutputFile object, use the wlOutputFile() constructor.

Syntax

new wlOutputFile(filename)

JavaScript Reference Guide  325 

Parameters

Parameter Name Description

filename Name of the new output file to be created.

Return Value

A pointer to a new wlOutputFile object.

Example

MyFileObj = new wlOutputFile(“FileName”)

Note:

Declaring a new wlOutputFile object creates a new, empty output file. If a file of that

name already exists, the file will be completely overwritten. Information will not be

appended to the end of an existing file. Be sure to choose a unique filename for the new

output file if you do not want to overwrite previous script data.

If you declare a new wlOutputFile object in the InitAgenda() function of a script,

the output file will be shared by all the script threads. There is no way to specify a

specific thread writing sequence-each thread will write to the output file in real time as

it reaches that line in the script execution.

If you declare a new wlOutputFile object in the InitClient() function or main

body of a script, use the thread number variable as part of the new filename to be sure

that each thread will create a unique output file.

If you declare a new wlOutputFile object in the main body of a script, and then run

your script for multiple iterations, use the RoundNum variable as part of the new

filename to be sure that each new round will create a unique output file.

Ideally, create new wlOutputFile objects only in the InitAgenda() function of a

script, not in the main script. If a statement in the main script creates an object, a new

object is created each time the statement is executed. If WebLOAD repeats the main script

many times, a large number of objects may be created and the system may run out of

memory.

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 326  Chapter 4. WebLOAD Actions, Objects, and Functions

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile (see wlOutputFile (object) on page 323)

 Write() (see Write() (method) on page 343)

 Writeln() (see Writeln() (method) on page 344)

wlRand (object)

Description

The wlRand object is a random number generator.

wlRand is a local object. WebLOAD automatically creates an independent wlRand

object for the test session script. You cannot declare wlRand objects yourself.

Syntax

wlRand.Method()

Example

The following example generates three random numbers having the following possible

values:

 Any integer.

 An integer from 1 to 9.

 One of the three numbers 0, 1, or 1.5.

function InitAgenda() {

wlRand.Seed(23)

}

AnyInteger = wlRand.Num()

OneToNine = wlRand.Range(1, 9)

OneOfThreeNumbers = wlRand.Select(0, 1, 1.5)

Methods

 Num() (see Num() (method) on page 177)

 Range() (see Range() (method) on page 215)

 Seed() (see Seed() (method) on page 229)

 Select() (see Select() (method) on page 230)

JavaScript Reference Guide  327 

wlSearchPairs (object)

Method of Object

 link (see link (object) on page 162)

 location (see location (object) on page 168)

Description

Each wlSearchPairs object contains a parsed version of the search attribute string,

storing the key/value pairs found in a document’s URL search strings. (For key-value

pairs found in HTTP response headers, see wlHeaders (see wlHeaders (object) on

page 314). Information found in request headers is available through the

wlHttp.Header (see Header (property) on page 140) property.)

wlSearchPairs objects are grouped into wlSearchPairs collections, where the

collections are themselves properties of the link and location objects.

wlSearchPairs objects are local to a single thread. You cannot create new

wlSearchPairs objects using the JavaScript new operator, but you can access them

through the properties and methods of the standard DOM objects. wlSearchPairs

properties are read only.

Syntax

wlSearchPairs objects are grouped together within collections of wlSearchPairs.

To access an individual wlSearchPairs’s properties, check the length property of

the wlSearchPairs collection and use an index number to access the individual

wlSearchPairs object, with the following syntax:

NumberofSearchPairObjects =

 document.links[1].wlSearchPairs.length

document.links[1].wlSearchPairs[index#].<wlSearchPairs-property>

Example

To find out how many wlSearchPairs objects are contained within a document’s

link, check the value of:

document.links[1].wlSearchPairs.length

Access each wlSearchPairs’s properties directly through the index number of that

item. For example:

document.links[1].wlSearchPairs[0].key

Suppose that the third link on a Web page has the following HTML code:

<A href=“http://www.ABCDEF.com/ProductFind.exe?

 Product=modems&Type=ISDN”> ISDN Modems

 328  Chapter 4. WebLOAD Actions, Objects, and Functions

You can download the page and parse the links using the following script:

function InitAgenda() {

wlGlobals.Url = “http://www.ABCDEF.com”

//Enable link parsing

wlGlobals.ParseLinks = true

}

wlHttp.Get()

For the link in question, WebLOAD stores the attribute pairs in the

document.links[2].wlSearchPairs property. This property is actually a

collection containing two wlSearchPairs objects. The following is a complete listing

of the collection.

document.links[2].wlSearchPairs[0].key = “Product”

document.links[2].wlSearchPairs[0].value = “modems”

document.links[2].wlSearchPairs[1].key = “Type”

document.links[2].wlSearchPairs[1].value = “ISDN”

Properties

The wlSearchPairs object includes the following properties:

 key (see key (property) on page 160)

 value (see value (property) on page 294)

See also

 Collections (on page 27)

 Header (see Header (property) on page 140)

 link (see link (object) on page 162)

 location (see location (object) on page 168)

 wlHeaders (see wlHeaders (object) on page 314)

 wlHttp (see wlHttp (object) on page 316)

wlSet() (method)

Method of Objects

The wlHttp object includes the following collections for storing data. These data

storage collections each include the method wlSet().

 wlHttp.Data (see Data (property) on page 66)

 wlHttp.DataFile (see DataFile (property) on page 67)

 wlHttp.FormData (see FormData (property) on page 97)

JavaScript Reference Guide  329 

 wlHttp.Header (see Header (property) on page 140)

Description

wlSet() is used when assigning a value to an element in the collection, to distinguish

between keywords and user-defined variables that share the same names. The need for

this care is explained in this section.

Syntax

wlHttp.Collection.wlSet(FieldName, Value)

Parameters

Parameter Name Description

FieldName A string with the name of the field whose value is to be set.

Value The value to be assigned to the specified field.

Return Value

The value of the specified property.

Example

wlHttp.FormData.wlSet(“FirstName”, “Bill”)

Comment

In JavaScript, users may work interchangeably with either an array[index] or

array.index notation. For example, the following two references are

interchangeable:

wlHttp.FormData[“Sunday”]

-Or-

wlHttp.FormData.Sunday

This flexibility is convenient for programmers, who are able to select the syntax that is

most appropriate for the context. However, it could potentially lead to ambiguity. For

example, assume a website included a form with a field called length. This could lead

to a confusing situation, where the word length appearing in a script could represent

either the number of elements in a FormData array, as explained in length, or the

value of the length field in the form. Errors would arise from a reasonable

assignment statement such as:

wlHttp.FormData[“length”] = 7

This is equivalent to the illegal assignment statement:

wlHttp.FormData.length = 7

WebLOAD therefore uses wlSet() to set field data whenever the name could lead to

potential ambiguity. When recording scripts with the AAT, WebLOAD recognizes

 330  Chapter 4. WebLOAD Actions, Objects, and Functions

potential ambiguities and inserts the appropriate wlSet() statements automatically.

In this case:

wlHttp.FormData.wlSet(“length”, 7)

See also

 Collections (on page 27)

 Data (see Data (property) on page 66)

 DataFile (see DataFile (property) on page 67)

 FormData (see FormData (property) on page 97)

 Header (see Header (property) on page 140)

 wlHttp (see wlHttp (object) on page 316)

wlSource (property)

Property of Object

 document (see document (object) on page 78)

Description

The complete HTML source code of the frame (read-only string).

You can use the HTML source to search for any desired information in an HTML page.

For information on JavaScript searching capabilities, see Regular Expressions in the

Netscape JavaScript Guide, which is supplied with the WebLOAD software.

Syntax

document.wlSource

Comment

To use the HTML source, you must enable the SaveSource (see SaveSource (property) on

page 226) property of the wlGlobals, wlLocals, or wlHttp object. To save the

source in a file, use the Outfile property (see Outfile (property) on page 188).

See also

 Outfile (see Outfile (property) on page 188)

 SaveSource (see SaveSource (property) on page 226)

JavaScript Reference Guide  331 

wlStatusLine (property)

Property of Object

 document (see document (object) on page 78)

Description

The status line of the HTTP header (read-only string, for example “OK”).

Syntax

document.wlHeaders[“status line”]

wlStatusNumber (property)

Property of Object

 document (see document (object) on page 78)

Description

The HTTP status value, which WebLOAD retrieves from the HTTP header (read-only

integer, for example 200).

Syntax

document.wlStatusNumber

wlStringParam() (parameterization)

Description

Define a random string parameter.

Syntax

<varName> = wlStringParam(minLength, maxLength, usage)

Parameters

Parameter Name Description

minLength The minimum string length (number of characters),

maxLength The maximum string length (number of characters).

 332  Chapter 4. WebLOAD Actions, Objects, and Functions

usage Defines when the parameter is updated, meaning when a new

value will be calculated. Possible values are:

 wlParamUpdateRound. The parameters value will be

calculated once for each round. Using the same parameter

again in the same round will result with the same value.

 wlParamUpdateOnce. The parameter’s value will be

calculated once per each Virtual Client (in its InitClient

function). All usage of the parameter by that Virtual Client

will always result in the same value.

 wlParamUpdateUse. The parameter’s value will be

calculated each time it is used.

Example

function InitClient()

{

NewParam1 = wlStringParam(2, 7, wlParamUpdateUse);

}

/***** WLIDE - Message - ID:3 *****/

InfoMessage(NewParam1.getValue())

 // END WLIDE

wlSystemGlobal (object)

Description

WebLOAD provides a global object called wlSystemGlobal. The wlSystemGlobal

object enables sharing of global variables and values between all elements of a test

session, across multiple scripts running on multiple Load Generators. (Compare to the

wlGeneratorGlobal (see wlGeneratorGlobal (object) on page 309), which enables sharing

of global variables and values between all threads of a single Load Generator, and to

the wlGlobals (see wlGlobals (object) on page 313), which enables sharing of global

variables and values between all threads of a single script, running on a single Load

Generator.)

Globally shared variables are useful when tracking a value or maintaining a count

across multiple threads or platforms. For example, you may include these shared

values in the messages sent to the Log window during a test session.

WebLOAD creates exactly one wlSystemGlobal object per a test session. Use the

wlSystemGlobal object methods to create and access variable values that you wish to

share system-wide. Edit wlSystemGlobal object properties and methods through the

IntelliSense editor, described in Using the IntelliSense JavaScript Editor (on page 18).

While global variables may be accessed anywhere in your script, be sure to initially

declare wlSystemGlobal values in the InitAgenda() function only. Do not define

JavaScript Reference Guide  333 

new values within the main body of a script, for they will not be shared correctly by all

threads.

Methods

 Add() (see Add() (method) on page 39)

 Get() (see Get() (addition method) on page 102)

 Set() (see Set() (addition method) on page 240)

Properties

wlSystemGlobal incorporates a dynamic property set that consists of whatever

global variables have been defined, set, and accessed by the user through the

wlSystemGlobal method set only.

See also

 wlGeneratorGlobal (see wlGeneratorGlobal (object) on page 309)

wlTables (object)

Property of Object

TABLE objects on a Web page are accessed through wlTables objects that are

grouped into collections of wlTables. The wlTables collection is a property of the

following object:

 document (see document (object) on page 78)

Description

Each wlTables object contains the parsed data for an HTML table (<TABLE> tag),

and serves as a means of providing access to the cells of the HTML table. Because table

data is organized into rows and cells, the wlTables object is also linked to row and

cell objects and their properties.

wlTables objects are grouped together within collections of wlTables. The tables are

arranged in the order in which they appear on the HTML page.

Syntax

To access an individual wlTables’s properties, check the length property of the

wlTables collection and use an index number to access the individual wlTables

object, with the following syntax:

NumberofTableObjects = document.wlTables.length

document.wlTables[index#].<wlTables-property>

 334  Chapter 4. WebLOAD Actions, Objects, and Functions

Example

Access each wlTables’s properties directly through the index number of that item.

For example:

document.wlTables[0].cols

wlTables objects may also be accessed directly using the table ID. This is illustrated

in the id property description.

Properties

Each wlTables object contains information about the data found in the whole table,

organized by rows, columns, and cells. The wlTables object includes the following

properties:

 cell (see cell (object) on page 44) (wlTables and row property)

 cols (see cols (property) on page 54) (wlTables property)

 id (see id (property) on page 146) (wlTables property)

 row (see row (object) on page 223) (wlTables property)

See also

 cellIndex (see cellIndex (property) on page 46) (cell property)

 Collections (on page 27)

 Compare() (see Compare() (method) on page 55)

 CompareColumns (see CompareColumns (property) on page 55)

 CompareRows (see CompareRows (property) on page 55)

 Details (see Details (property) on page 76)

 InnerHTML (see InnerHTML (property) on page 154) (cell property)

 InnerText (see InnerText (property) on page 156) (cell property)

 MatchBy (see MatchBy (property) on page 170)

 Prepare() (see Prepare() (method) on page 208)

 ReportUnexpectedRows (see ReportUnexpectedRows (property) on page 220)

 rowIndex (see rowIndex (property) on page 224) (row property)

 tagName (see tagName (property) on page 279) (cell property)

wlTarget (property)

Property of Object

 wlHttp (see wlHttp (object) on page 316)

JavaScript Reference Guide  335 

Description

The exact location within the Web page of the frame into which the transaction should

be downloaded.

Syntax

wlHttp.wlTarget = “LocationString”

Comment

wlTarget uses the WebLOAD shorthand notation, described in the WebLOAD

Scripting Guide. For example, assume the expected location is set to #1.#1. Since frame

numbering begins with 0, this refers to the second subframe located within the second

frame on the Web page. Neither frame has been assigned an optional name value.

The wlHttp.wlTarget property of a transaction stores the complete path of the

frame, from the root window of the Web page. Compare this to the form.target and

link.target properties, which identify the most recent, immediate location of the

target frame using the name string or keyword that was assigned to that frame. The

last field of the wlHttp.wlTarget string is the target name stored in the

form.target and link.target properties.

wlTimeParam() (parameterization)

Description

Return the current date and/or time according to the format specified in the

parameter’s properties

Syntax

<varName> = wlTimeParam(format, offset, usage)

 336  Chapter 4. WebLOAD Actions, Objects, and Functions

Parameters

Parameter Name Description

format Formats are comprised from symbols, prefixed with the ‘%’ sign

and from textual characters.

The following are the symbols used to create the date/time

formats:

 c – complete date time as number

 H – Hours (24 hour clock)

 I – Hours (12 hour clock)

 M – minutes

 S – seconds (S.000 – seconds with milliseconds)

 p – AM or PM

 d – day in month (number)

 m – month (number)

 y – year (2 digits)

 Y – year (4 digits)

 b – month name (3 letter)

 B – month name (full)

The following are the formats available to the user:

 %c

 %H:%M:%S

 %I:%M:%S %p

 %d-%b-%Y

 %d/%m/%y

 %m/%d/%y

 %d/%m/%Y

 %m/%d/%Y

 %Y-%m-%d %H:%M:%S

 %Y-%m-%d %H:%M:%S.000

offset The offset in days and time. The offset can be used so the

parameter will not consider the current date but another date in

the future or in the past.

A negative value indicates a date/time prior to current date/time.

JavaScript Reference Guide  337 

Parameter Name Description

usage Defines when the parameter is updated, i.e., when a new value

will be calculated.

Possible values are:

 wlParamUpdateRound. The parameters value will be

calculated once for each round. Using the same parameter

again in the same round will result in the same value.

 wlParamUpdateOnce. The parameter’s value will be

calculated once per each Virtual Client (in its InitClient

function). Every usage of the parameter by that Virtual Client

will always result in the same value.

 wlParamUpdateUse. The parameter’s value will be

calculated each time it is used.

Example

function InitClient()

{

NewParam1 = wlTimeParam("%Y-%m-%d %H:%M:%S", 1200,

wlParamUpdateRound);

}

/***** WLIDE - Message - ID:3 *****/

InfoMessage(NewParam1.getValue())

 // END WLIDE

wlVerification (object)

Description

The wlverification object stores the response validation properties set by the user

through the WebLOAD Recorder, including HTML Web page title, text within a Web

page, time taken to load a Web page, and size of a Web page (in bytes).

Note: Most global configuration property values and user-defined variables should be

set through the WebLOAD Recorder. The property descriptions here are intended

mainly to explain the lines of code seen in the JavaScript View of the WebLOAD

Recorder desktop. Syntax details are also provided for the benefit of users who prefer

to manually edit the JavaScript code of their scripts through the IntelliSense editor,

described in Using the IntelliSense JavaScript Editor (on page 18).

Properties

The wlVerification object includes the following property classes:

 Page Time

 338  Chapter 4. WebLOAD Actions, Objects, and Functions

 Page Content Length

 Severity

 Function

 Error Message

Methods

 Title (function)

 ContentLength (function)

 MaxPageTime (function)

 Text (function)

Syntax

Each individual property class includes the syntax specifications that apply to that

class.

GUI mode

The wlVerification property and method descriptions explain how to explicitly set

values for these response validations within your JavaScript script files.

The recommended way to set response validation values is through the WebLOAD

Recorder, using the Response Validation dialog box accessed from the Home tab in the

WebLOAD Recorder desktop ribbon. The dialog box provide a means of defining and

setting response validation values with ease, simplicity, and clarity.

See also

 PageContentLength (see PageContentLength (property) on page 189)

 PageTime (see PageTime (property) on page 190)

 Severity (see Severity (property) on page 247)

 Function (see Function (property) on page 100)

 ErrorMessage (see ErrorMessage (property) on page 91)

 Title (see Title (function) on page 285)

wlVersion (property)

Property of Objects

 document (see document (object) on page 78)

JavaScript Reference Guide  339 

Description

The HTTP protocol version, which WebLOAD retrieves from the HTTP header (read-

only string, for example “1.1”).

Example

currentVersionNumber = document.wlVersion

WLXmlDocument() (constructor)

Method of Object

 wlXmls (see wlXmls (object) on page 340)

Description

Call WLXmlDocument() without any parameters to create a new, blank XML DOM

object. The new object may be filled later with any new data you prefer. If the DTD

section of your XML document includes any external references, use this form of the

WLXmlDocument() constructor to create new XML DOM objects. You may add nodes

and post the new XML data to a website as described in the WebLOAD Scripting Guide.

Call WLXmlDocument() with a string parameter to create new XML DOM objects

from an XML string that includes a completely self-contained DTD section with no

external references.

Syntax

new WLXmlDocument([xmlString])

Parameters

Parameter Name Description

[xmlString] Optional string parameter that contains a complete set of XML

document data.

Return Value

Returns a new XML DOM object. If the constructor was called with no parameters, the

new object will be empty. If the constructor was called with an XML string, the new

object will contain an XML DOM hierarchy based on the XML data found in the

parameter string.

Example

NewBlankXMLObj = new WLXmlDocument()

-Or-

NewXMLObj = new WLXmlDocument(xmlStr)

 340  Chapter 4. WebLOAD Actions, Objects, and Functions

Comment

Objects created by the WLXmlDocument() constructor provide access to the XML

DOM Document Interface. They do not expose the HTML property set, (id,

innerHTML, and src), as those properties have no meaning for XML DOM objects

created this way.

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 load() (see load() (method) on page 163)

 load() and loadXML() Method Comparison (on page 164)

 loadXML() (see loadXML() (method) on page 167)

 src (see src (property) on page 252)

 XMLDocument (see XMLDocument (property) on page 345)

wlXmls (object)

Property of Object

 document (see document (object) on page 78)

Description

WebLOAD has extended the standard IE Browser DOM document object with the

wlXmls collection of XML DOM objects, providing full access to XML structures.

Using XML DOM objects, WebLOAD scripts are able to both access XML site

information, and generate new XML data to send back to the server for processing,

taking advantage of all the additional benefits that XML provides.

Both WebLOAD and the IE Browser use the MSXML parser to create XML DOM

objects. Since WebLOAD XML DOM objects and Browser XML DOM objects are

created by the same MSXML parser, the XML DOM objects that are produced for both

WebLOAD and the IE Browser are identical.

When working through the IE Browser, XML DOM objects are found in the all

collection. When working through WebLOAD, XML DOM objects are found in the

wlXmls collection. Since a WebLOAD XML DOM object is identical to an IE Browser

XML DOM object, the WebLOAD XML DOM uses the same Document Interface

(programming methods and properties) found in the IE Browser XML DOM.

JavaScript Reference Guide  341 

This section describes the wlXmls collection and the properties and methods used

most often when working with WebLOAD XML DOM objects. For an explanation of

the XML DOM, see the WebLOAD Scripting Guide. For a complete list of the XML DOM

properties and methods supported by WebLOAD, see WebLOAD-supported XML DOM

Interfaces (on page 457).

Note: WebLOAD supports a new method for parsing and manipulating XML data. For

more information see XML Parser Object on page 437.

Syntax

XML DOM objects are grouped together within wlXmls collections. The XML DOM

objects are arranged in the order in which they appear on the HTML page.

To access an individual XML DOM object’s data and Document Interface, check the

length property of the wlXmls collection and use an index number to access the

individual XML DOM object.

Access the HTML properties for each XML DOM object directly using the following

syntax:

document.wlXmls[#].<html-DOM property>

Access the XML DOM Document Interface for each document element directly using the

following syntax:

document.wlXmls[#].XMLDocument.documentElement.<property>

Example

To find out how many XML DOM objects are contained within a document, check the

value of:

document.wlXmls.length

Access the HTML property src as follows:

document.wlXmls[0].src

Access the XML DOM document interface as follows:

document.wlXmls[0].XMLDocument.documentElement.nodeName

XML DOM objects may also be accessed directly using the XML ID. For example, if the

first XML object on a page is assigned the ID tag myXmlDoc, you could access the

object using any of the following:

MyBookstore = document.wlXmls[0]

-Or-

MyBookstore = document.wlXmls.myXmlDoc

-Or-

 342  Chapter 4. WebLOAD Actions, Objects, and Functions

MyBookstore = document.wlXmls[“myXmlDoc”]

The following example illustrates HTML property usage. Assume you are working

with a Web Bookstore site that includes the following inventory database code

fragment:

<xml ID=“xmlBookSite”>

<?xml version=“1.0”?>

<!-- Bookstore inventory database -->

<bookstore>

JavaScript Reference Guide

<author>Mark Twain</author>

<title>Tom Sawyer</title>

<price>$11.00</price>

</book>

JavaScript Reference Guide

<author>Oscar Wilde</author>

<title>The Giant And His Garden</title>

<price>$8.00</price>

</book>

</bookstore>

</xml>

When accessing this website, your script may use the standard HTML properties id

and innerHTML to print out text strings showing the information found within the

XML tags, as follows:

var XMLBookstoreDoc = document.wlXmls[0]

InfoMessage(“ID = “ + XMLBookstoreDoc.id)

InfoMessage(“HTML text = “ + XMLBookstoreDoc.innerHTML)

Running this script produces the following output:

ID = xmlBookSite

HTML text = <?xml version=“1.0”?>

…etc.

Methods and Properties

WebLOAD supports all standard W3C XML DOM properties and methods, listed in

WebLOAD-supported XML DOM Interfaces (on page 457). These HTML properties and

methods are accessed via the XMLDocument (see XMLDocument (property) on

page 345) property. In addition, if the object is constructed from a Data Island, the id

(see id (property) on page 146), InnerHTML (see InnerHTML (property) on page 154), and

src (see src (property) on page 252) HTML properties are exposed. Each property is

described in its own section.

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

JavaScript Reference Guide  343 

 load() (see load() (method) on page 163)

 loadXML() (see loadXML() (method) on page 167)

 src (see src (property) on page 252)

 WLXmlDocument() (see WLXmlDocument() (constructor) on page 339)

 XMLDocument (see XMLDocument (property) on page 345)

See also

 Collections (on page 27)

 load() and loadXML() Method Comparison (on page 164)

 XML Parser Object on page 437

Write() (method)

Method of Object

 wlOutputFile (see wlOutputFile (object) on page 323)

Description

This method writes a string to the output file.

Syntax

Write(string)

Parameters

Parameter Name Description

string The text string you wish added to the output.

Example

MyFileObj = new wlOutputFile(filename)

…

MyFileObj.Write(“Happy Birthday”)

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 344  Chapter 4. WebLOAD Actions, Objects, and Functions

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile() (see wlOutputFile() (constructor) on page 324)

 Writeln() (see Writeln() (method) on page 344)

Writeln() (method)

Method of Object

 wlOutputFile (see wlOutputFile (object) on page 323)

Description

This method writes a string followed by a newline character to the output file.

Syntax

Writeln(string)

Parameters

Parameter Name Description

string The text string you wish added to the output.

Example

MyFileObj = new wlOutputFile(filename)

…

MyFileObj.Writeln(“Happy Birthday”)

See also

 Close() (see Close() (function) on page 52)

 CopyFile() (see CopyFile() (function) on page 61)

 Delete() (see Delete() (cookie method) on page 75)

 File Management Functions (on page 28)

 GetLine() (see GetLine() (function) on page 123)

 IncludeFile() (see IncludeFile() (function) on page 150)

 Open() (see Open() (function) on page 183)

 Reset() (see Reset() (method) on page 220)

 Using the IntelliSense JavaScript Editor (on page 18)

 wlOutputFile() (see wlOutputFile() (constructor) on page 324)

 Write() (see Write() (method) on page 343)

JavaScript Reference Guide  345 

XMLDocument (property)

Method of Object

 wlXmls (see wlXmls (object) on page 340)

Description

The XMLDocument property represents the actual XML DOM object. Through

XMLDocument you are able to access all the standard XML DOM properties and

methods listed in WebLOAD-Supported XML DOM Interfaces (on page 457).

Note: WebLOAD supports a new method for parsing and manipulating XML data. For

more information see XML Parser Object on page 437.

Syntax

Use the following syntax:

document.wlXmls[#].XMLDocument.documentElement.<property>

XMLDocument is also understood by default. You may access the XML DOM

properties and methods without including XMLDocument in the object reference. For

example:

document.wlXmls[0].documentElement.<property>

However, including XMLDocument is a good programming practice, to emphasize the

fact that you are dealing directly with an XML DOM object and not a Data Island.

Example

document.wlXmls[0].XMLDocument.documentElement.nodeName

See also

 Collections (on page 27)

 id (see id (property) on page 146)

 InnerHTML (see InnerHTML (property) on page 154)

 load() (see load() (method) on page 163)

 load() and loadXML() Method Comparison (on page 164)

 loadXML() (see loadXML() (method) on page 167)

 src (see src (property) on page 252)

 XML Parser Object on page 437

 346  Chapter 4. WebLOAD Actions, Objects, and Functions

XMLParserObject (object)

Description

WebLOAD provides an embedded, third-party XML parser object to improve the

multi-platform support for XML parsing within the WebLOAD environment. The XML

parser object can be used instead of MSXML and Java XML parsing, resulting in lower

memory consumption and increased performance during load testing.

The XML parser object can be used to reference any element in an XML document. For

example, you can use the XML parser object to generate an Excel file containing the

desired details of a specified element.

WebLOAD uses the Open Source Xerces XML parser (see

http://xml.apache.org/xerces-c/).

The parse() method, not exposed by the original XML parser, is exposed by

WebLOAD. This method is identical to the parseURI() method, except that it

receives an XML string instead of a URI.

For more information on the XMLParserObject see XML Parser Object on page 437.

Syntax

The XML parser object is instanced as follows:

xmlObject = new XMLParserObject();

Example

For a detailed example of the implementation of the XML parser object, refer to

Example on page 443.

Methods and Properties

 For a list of the XMLParserObject’s methods, see Methods on page 438.

 For a list of the XMLParserObject’s properties, see Properties on page 442.

http://xml.apache.org/xerces%1ec/

JavaScript Reference Guide  347 

Chapter 5

 WebLOAD Internet Protocols
Reference

This chapter provides detailed reference information on WebLOAD support for the

following Internet protocols:

 FTP, through the wlFTP Object (on page 347) and wlFTPs Object (on page 359) (for

secure SSL connections)

 HTML email, through the wlHtmMailer Object (on page 368)

 IMAP, through the wlIMAP Object (on page 374)

 NNTP, through the wlNNTP Object (on page 385)

 POP, through the wlPOP Object (on page 395) and wlPOPs Object (on page 402)

(for secure SSL connections)

 SMTP, through the wlSMTP Object (on page 407) and wlSMTPs Object (on

page 414) (for secure SSL connections)

 TCP, through the wlTCP Object (on page 419)

 Telnet, through the wlTelnet Object (on page 424)

 UDP, through the wlUDP Object (on page 430)

wlFTP Object

The wlFTP object provides support for FTP (File Transfer Protocol) load and functional

testing within WebLOAD. Support for standard FTP operation is included. FTP over

secure connections (SSL) is supported through the wlFTPs Object (on page 359).

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Logon() method; otherwise an exception is thrown.

To access the wlFTP object, you must include the wlFtp.js file in your

InitAgenda() function.

 348  Chapter 5. WebLOAD Internet Protocols Reference

wlFTP Properties

Data

The Data property lets you specify the local data stream to upload to the host. You

use this property to upload data. For example:

ftp.Data = datastream

DataFile

The DataFile property lets you specify the local file to upload to the host. For

example:

ftp.DataFile = filename

document

The document property is an array containing the files downloaded and uploaded in

the current FTP session. For example:

var recentdownload = ftp.document[1]

Outfile

The Outfile property lets you specify the name of a downloaded file. You use this

property to rename a downloaded file as it is transferred to your computer. This

property must be an explicit file name, not a pattern. If you specify the Outfile

property, the document property remains empty. If you are downloading a series of

files, only the last file downloaded is stored in the Outfile.

If you want to store all of the files downloaded, either delete the Outfile property or

specify an empty value. The downloaded files are then stored in the document

property. For example:

ftp.Outfile = filename

PassiveMode

The PassiveMode property lets you use FTP through firewalls. Valid values are:

 true - passive mode is set, and you may FTP through firewalls.

 false - active mode is set, and you may not FTP through firewalls.

For example:

ftp.PassiveMode = modesetting

JavaScript Reference Guide  349 

PassWord

The PassWord property lets you specify a password when logging on to a host. You

use this property to log onto a restricted FTP host. WebLOAD automatically sends the

password to the FTP host when a wlFTP object connects to an FTP host.

ftp.PassWord = password

Caution: The password appears in plain text in the script. The password is visible to

any user who has access to the script.

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption.

var filesize = ftp.Size

StartByte

The StartByte property lets you specify the byte offset to start transferring from. The

default value is 0. This property automatically resets to zero after each transfer. You

use this property to specify a starting point when resuming interrupted transfers.

ftp.StartByte = byteoffset

TransferMode

The TransferMode property lets you specify the transfer mode for uploaded and

downloaded files. You must specify the transfer mode before each transfer. If you do

not specify a transfer mode, auto, the default mode, is used. Valid values are:

 auto - 0

 text - 1

 binary - 2

You may also specify the transfer mode using the following constants:

 WLFtp.TMODE_ASCII - text

 WLFtp.TMODE_BINARY - binary

 WLFtp.TMODE_DEFAULT - auto

For example:

ftp.TransferMode = transfermode

 350  Chapter 5. WebLOAD Internet Protocols Reference

UserName

The UserName property lets you specify a User ID when logging on to a host. You use

this property to log onto a restricted FTP host. WebLOAD automatically sends the user

name to the FTP host when a wlFTP object connects to an FTP host.

ftp.UserName = username

wlFTP Methods

Append()

Syntax Append(pattern)

Parameters

pattern The file to which you are appending. This may be a specific file

name, or it may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Similar to the Upload() method, Append() adds the data to the

target file instead of overwriting it. If the target file does not exist,

Append() creates it.

AppendFile()

Syntax AppendFile(filename)

Parameters

filename The remote file to which you want to append data.

Return Value Null if successful, an exception if unsuccessful.

Comments Uploads a local file and appends it to the specified file on the

host. The local file is specified by the DataFile property. The

destination file is specified by the filename parameter. If the

DataFile property is not specified, then the contents of the Data

property are sent as a datastream to be appended to the file

specified by the filename parameter. If the target file does not

exist, AppendFile() creates it.

ChangeDir()

Syntax ChangeDir(name)

Parameters

name The name of the directory to which you want to move.

Return Value Null if successful, an exception if unsuccessful.

JavaScript Reference Guide  351 

Comments Changes the current working directory on the host to the one

specified by the name parameter.

ChFileMod()

Syntax ChFileMod(filename, attributes)

Parameters

filename The name of the file you want to alter. This parameter may be a

specific file name, or it may contain wildcards.

attributes The new attributes assigned to the file. Values are specified in the

three digit 0-7 format.

Return Value Null if successful, an exception if unsuccessful.

Comments Changes attributes of the specified file according to the values

specified in the attribute parameter.

ChMod()

Syntax ChMod(pattern, attributes)

Parameters

pattern The name of the files and directories you want to alter. This

parameter may be a specific file name, or it may contain

wildcards.

attributes The new attributes assigned to the file. Values are specified in the

three digit 0-7 format.

Return Value Null if successful, an exception if unsuccessful.

Comments Uses a loop to changes attributes of the specified files and

directories according to the values specified in the attribute

parameter. If an iteration of the loop fails, the loop is cancelled,

potentially leaving some files unchanged. To avoid this risk you

must write your own loop with error handling capability.

Delete()

Syntax Delete(pattern)

Parameters

pattern The file you are deleting. This may be a specific file name, or it

may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

 352  Chapter 5. WebLOAD Internet Protocols Reference

Comments Deletes the specified files from the FTP host. This function calls

the DeleteFile() method in a loop to delete all the specified files. If

an iteration of the loop fails, the loop is cancelled, potentially

leaving some files undeleted.

DeleteFile()

Syntax Delete(filename)

Parameters

filename The file you are deleting. This must be a specific file name.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the specified file from the FTP host.

Dir()

Syntax Dir(pattern)

Parameters

pattern The name of the file or directory for which you are searching. This

may be a specific file name, or it may contain wildcards.

Return Value Returns a JavaScript array with the following members if

successful, an exception if unsuccessful.

a[].fileName // name of file

a[].fileAttributes // attribute string

a[].fileTime // date and time of last modification

a[].fileSize // size of file in bytes

a[].isDir // 1 if the entry represents a directory, 0 for a file

Note: If the host supports only basic information, only

the fileName property of the array is defined.

Comments Lists files and directories that match the pattern parameter in the

current directory of the host. This method returns detailed

information if the server supports it.

Download()

Syntax Download(pattern)

Parameters

pattern The file you are downloading. This may be a specific file name, or

it may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

JavaScript Reference Guide  353 

Comments Uses a loop to download the specified files to the local computer.

If the property has been set, the data is saved to the specified file.

If the Outfile property has not been set, the file is saved with its

current name. If an iteration of the loop fails, the loop is cancelled,

potentially leaving some files not downloaded.

DownloadFile()

Syntax Download(filename)

Parameters

filename The file you are downloading. This must be a specific file name.

Return Value Null if successful, an exception if unsuccessful.

Comments Downloads a file to the local computer. If the property has been

set, the data is saved to the specified file. If the Outfile property

has not been set, the file is saved with its current name.

GetCurrentPath()

Syntax GetCurrentPath()

Return Value A string containing the current path if successful, an exception if

unsuccessful.

Comments Returns the current path on the host.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the current path if successful, an exception if

unsuccessful.

Comments A string containing the latest response string if successful, an

exception if unsuccessful.

ListLocalFiles()

Syntax ListLocalFiles(filter)

Parameters

filter The files you want to list. The filter may be a patter or a specific

file name.

Return Value An array of matching objects with following properties if

successful, an exception if unsuccessful.

a[].fileName // A string containing name of the file

a[].isDir // A Boolean, true if the entry represents a directory

 354  Chapter 5. WebLOAD Internet Protocols Reference

Comments Lists files matching the filter parameter in the current directory of

the local computer.

Logoff()

Syntax Logoff()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the FTP host.

Logon()

Syntax Logon(host, [port])

Parameters

host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a

port, the default FTP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a conversation with the FTP host. If you are logging on to a

restricted site, you must have specified the UserName and

PassWord properties before using this method.

MakeDir()

Syntax MakeDir(name)

Parameters

name The name of the new directory that you are creating.

Return Value Null if successful, an exception if unsuccessful.

Comments Creates a new directory beneath the current directory on the host.

RemoveDir()

Syntax RemoveDir(name)

Parameters

name The name of the directory that you are deleting.

Return Value Null if successful, an exception if unsuccessful.

JavaScript Reference Guide  355 

Comments Deletes the named directory from the host.

Note: You may not delete a directory until that directory is

empty. Remove all files from the directory before using the

RemoveDir() method. You may use the Delete() method

to delete files on the host.

Rename()

Syntax Rename(from, to)

Parameters

from The file that you want to rename.

to The new file name for the file. If this file already exists, it is

overwritten.

Return Value Null if successful, an exception if unsuccessful.

Comments Renames the files in the current directory described by the from

parameter to the name described in the to parameter.

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

Upload()

Syntax Upload(pattern)

Parameters

pattern The file you are uploading. This may be a specific file name, or it

may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Uses a loop to upload the local files specified by the pattern

parameter to the host. The file is not renamed, and values

specified by the DataFile and Data property are ignored. If an

iteration of the loop fails, the loop is cancelled, potentially leaving

some files not transported.

 356  Chapter 5. WebLOAD Internet Protocols Reference

UploadFile()

Syntax UploadFile(filename)

Parameters

filename The destination name of the local file. This parameter may be the

same name as the local file name, or it may be used to rename the

file once it arrives at the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Uploads a local file to the host. The local file is specified by the

DataFile property. The destination file name is specified by the

filename parameter. If the DataFile property is not specified,

then the contents of the Data property are sent as a datastream

to be saved under the name specified by the filename

parameter.

UploadUnique()

Syntax UploadUnique()

Return Value A string containing the name of the newly created file if

successful, an exception if unsuccessful.

Comments Uploads data or a file to a newly created, unique file on the host.

The file name is created by the host, and returned as a string

value. The local file is specified by the DataFile property. If the

DataFile property is not specified, then the contents of the Data

property are sent as a datastream.

WLFtp()

Syntax new WLFtp()

Return Value A new wlFTP object.

Comments Creates a new wlFTP object, used to interact with the server.

Example function InitClient(){

myNewFtpObject = new WLFtp()

}

FTP Sample Code

// script Initialization

function InitAgenda() {

// include the file that enables FTP

IncludeFile("wlFtp.js",WLExecuteScript)

}

function InitClient(){

JavaScript Reference Guide  357 

// Create the FTP object we need to interact with the server

ftp=new WLFtp()

}

function TerminateClient(){

// Delete the FTP object we used

delete ftp

}

//===

//Body Of script. Give user name and password and login

ftp.UserName="UserID" // Set the user name

ftp.PassWord="TopSecret" // Set the password

//this.PassiveMode=true; // Enable this if firewall is in the way

ftp.Logon("localhost") // Login to the server

//===

//Test Download

ftp.TransferMode = ftp.TMODE_ASCII; // Force all downloads ASCII

ftp.Outfile="c:\\downloaded.txt";

 // Define a local file to save the downloaded file

ftp.Download("file.txt"); // Grab the remote file

// The remote file may be a wildcard, so for each file

// downloaded an entry is made in the document array.

// With this approach an Outfile is not required. Instead the

// document object holds the downloaded files for this client.

// The loop below loops through each entry in the document

// array and writes the file contents out to the log

for (var i = 0; i < ftp.document.length; i++)

{

InfoMessage(ftp.document[i]);

}

//==

//Test Upload

ftp.TransferMode = ftp.TMODE_ASCII;

ftp.DataFile="c:\\upload.txt";

 // define local file to upload

ftp.UploadFile("hello.txt");

 // upload it to the remote host as "hello.txt"

ftp.Data="hello world";

 // define a string to send to the remote host

ftp.UploadFile("hello.txt");

 // upload the string and save it as "hello.txt"

//===

 358  Chapter 5. WebLOAD Internet Protocols Reference

//Test Append

ftp.TransferMode = ftp.TMODE_ASCII;

ftp.DataFile="c:\\append.txt";

 // identify a local file to upload

ftp.AppendFile("hello.txt");

 // add it to the existing contents of "hello.txt"

//==

//Test Delete

ftp.Delete("hello.txt");

 // delete "hello.txt" from the remote server

//===

//Test Directory Functions

ftp.MakeDir("DirectoryName"); // make a new directory

ftp.ChangeDir("DirectoryName"); // change to that directory

ftp.DataFile="c:\\file1.txt"; // select a local file

ftp.Upload("file1.txt"); // upload it to the new directory

var files = ftp.Dir("*.*");

 // Generate a list of the files in that directory

for (var i = 0 ; i < files.length; i++)

{

InfoMessage("the file name is:" + files[i].fileName);

 // Print each file's name to the log

}

ftp.Delete("*.*"); // delete the files on the directory

ftp.ChangeDir(".."); // go up a level in the tree

ftp.RemoveDir("DirectoryName"); // delete the directory itself

//===

//Test Advanced Directory Handling

var files = ftp.Dir("*.txt"); // show all the text files

if (files.length > 0) // IF there are any entries to go through

{ // THEN print their detailed attributes to the log

for (var i = 0 ; i < files.length; i++)

{ // Print each file's details to the log

InfoMessage(files[0].fileName); // name

InfoMessage(files[0].fileAttributes); // attributes

InfoMessage(files[0].fileTime); // timestamp

InfoMessage(files[0].fileSize); // size in bytes

InfoMessage(files[0].dirFlag);

 // set when the object is a directory

}

JavaScript Reference Guide  359 

}

//==

//Test General Functions

status = ftp.GetStatusLine();

 // what was the last response from the server?

InfoMessage("status= "+ status); // print it

path = ftp.GetCurrentPath(); // where am I?

InfoMessage("path="+ path); // right here

//==

catch (e)

{

InfoMessage ("Error" + e)

}

ftp.Logoff() // do not forget to log out of the session

InfoMessage("done") // this is the end of the FTP sample script

wlFTPs Object

The wlFTPs object provides support for FTP (File Transfer Protocol) load and

functional testing over secure connections (SSL).

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Logon() method; otherwise an exception is thrown.

To access the wlFTPs object, you must include the wlFtps.js file in your

InitAgenda() function.

wlFTPs Properties

Data

The Data property lets you specify the local data stream to upload to the host. You

use this property to upload data. For example:

ftp.Data = datastream

 360  Chapter 5. WebLOAD Internet Protocols Reference

DataFile

The DataFile property lets you specify the local file to upload to the host. For

example:

ftp.DataFile = filename

document

The document property is an array containing the files downloaded and uploaded in

the current FTP session. For example:

var recentdownload = ftp.document[1]

Outfile

The Outfile property lets you specify the name of a downloaded file. You use this

property to rename a downloaded file as it is transferred to your computer. This

property must be an explicit file name, not a pattern. If you specify the Outfile

property, the document property remains empty. If you are downloading a series of

files, only the last file downloaded is stored in the Outfile.

If you want to store all of the files downloaded, either delete the Outfile property or

specify an empty value. The downloaded files are then stored in the document

property. For example:

ftp.Outfile = filename

PassiveMode

The PassiveMode property lets you use FTP through firewalls. Valid values are:

 true – Passive mode is set, and you may FTP through firewalls.

 false – Active mode is set, and you may not FTP through firewalls.

For example:

ftp.PassiveMode = modesetting

PassWord

The PassWord property lets you specify a password when logging on to a host. You

use this property to log onto a restricted FTP host. WebLOAD automatically sends the

password to the FTP host when a wlFTP object connects to an FTP host.

ftp.PassWord = password

Caution: The password appears in plain text in the script. The password is visible to

any user who has access to the script.

JavaScript Reference Guide  361 

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption.

var filesize = ftp.Size

StartByte

The StartByte property lets you specify the byte offset to start transferring from. The

default value is 0. This property automatically resets to zero after each transfer. You

use this property to specify a starting point when resuming interrupted transfers.

ftp.StartByte = byteoffset

TransferMode

The TransferMode property lets you specify the transfer mode for uploaded and

downloaded files. You must specify the transfer mode before each transfer. If you do

not specify a transfer mode, auto, the default mode, is used. Valid values are:

 auto – 0

 text – 1

 binary – 2

You may also specify the transfer mode using the following constants:

 WLFtp.TMODE_ASCII – text

 WLFtp.TMODE_BINARY – binary

 WLFtp.TMODE_DEFAULT – auto

For example:

ftp.TransferMode = transfermode

UserName

The UserName property lets you specify a User ID when logging on to a host. You use

this property to log onto a restricted FTP host. WebLOAD automatically sends the user

name to the FTP host when a wlFTP object connects to an FTP host.

ftp.UserName = username

 362  Chapter 5. WebLOAD Internet Protocols Reference

wlFTPs Methods

Append()

Syntax Append(pattern)

Parameters

pattern The file to which you are appending. This may be a specific file

name, or it may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Similar to the Upload() method, Append() adds the data to the

target file instead of overwriting it. If the target file does not exist,

Append() creates it.

AppendFile()

Syntax AppendFile(filename)

Parameters

filename The remote file to which you want to append data.

Return Value Null if successful, an exception if unsuccessful.

Comments Uploads a local file and appends it to the specified file on the

host. The local file is specified by the DataFile property. The

destination file is specified by the filename parameter. If the

DataFile property is not specified, then the contents of the Data

property are sent as a datastream to be appended to the file

specified by the filename parameter. If the target file does not

exist, AppendFile() creates it.

ChangeDir()

Syntax ChangeDir(name)

Parameters

name The name of the directory to which you want to move.

Return Value Null if successful, an exception if unsuccessful.

Comments Changes the current working directory on the host to the one

specified by the name parameter.

ChFileMod()

Syntax ChFileMod(filename, attributes)

Parameters

JavaScript Reference Guide  363 

filename The name of the file you want to alter. This parameter may be a

specific file name, or it may contain wildcards.

attributes The new attributes assigned to the file. Values are specified in the

three digit 0-7 format.

Return Value Null if successful, an exception if unsuccessful.

Comments Changes attributes of the specified file according to the values

specified in the attribute parameter.

ChMod()

Syntax ChMod(pattern, attributes)

Parameters

pattern The name of the files and directories you want to alter. This

parameter may be a specific file name, or it may contain

wildcards.

attributes The new attributes assigned to the file. Values are specified in the

three digit 0-7 format.

Return Value Null if successful, an exception if unsuccessful.

Comments Uses a loop to changes attributes of the specified files and

directories according to the values specified in the attribute

parameter. If an iteration of the loop fails, the loop is cancelled,

potentially leaving some files unchanged. To avoid this risk you

must write your own loop with error handling capability.

Delete()

Syntax Delete(pattern)

Parameters

pattern The file you are deleting. This may be a specific file name, or it

may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the specified files from the FTP host. This function calls

the DeleteFile() method in a loop to delete all the specified files. If

an iteration of the loop fails, the loop is cancelled, potentially

leaving some files undeleted.

DeleteFile()

Syntax Delete(filename)

Parameters

filename The file you are deleting. This must be a specific file name.

 364  Chapter 5. WebLOAD Internet Protocols Reference

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the specified file from the FTP host.

Dir()

Syntax Dir(pattern)

Parameters

pattern The name of the file or directory for which you are searching. This

may be a specific file name, or it may contain wildcards.

Return Value Returns a JavaScript array with the following members if

successful, an exception if unsuccessful.

a[].fileName // name of file

a[].fileAttributes // attribute string

a[].fileTime // date and time of last modification

a[].fileSize // size of file in bytes

a[].isDir // 1 if the entry represents a directory, 0 for a file

Note: If the host supports only basic information, only the

fileName property of the array is defined.

Comments Lists files and directories that match the pattern parameter in the

current directory of the host. This method returns detailed

information if the server supports it.

Download()

Syntax Download(pattern)

Parameters

pattern The file you are downloading. This may be a specific file name, or

it may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Uses a loop to download the specified files to the local computer.

If the property has been set, the data is saved to the specified file.

If the Outfile property has not been set, the file is saved with its

current name. If an iteration of the loop fails, the loop is cancelled,

potentially leaving some files not downloaded.

DownloadFile()

Syntax Download(filename)

Parameters

JavaScript Reference Guide  365 

filename The file you are downloading. This must be a specific file name.

Return Value Null if successful, an exception if unsuccessful.

Comments Downloads a file to the local computer. If the property has been

set, the data is saved to the specified file. If the Outfile property

has not been set, the file is saved with its current name.

GetCurrentPath()

Syntax GetCurrentPath()

Return Value A string containing the current path if successful, an exception if

unsuccessful.

Comments Returns the current path on the host.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the current path if successful, an exception if

unsuccessful.

Comments A string containing the latest response string if successful, an

exception if unsuccessful.

ListLocalFiles()

Syntax ListLocalFiles(filter)

Parameters

filter The files you want to list. The filter may be a patter or a specific

file name.

Return Value An array of matching objects with following properties if

successful, an exception if unsuccessful.

a[].fileName // A string containing name of the file

a[].isDir // A Boolean, true if the entry represents a directory

Comments Lists files matching the filter parameter in the current directory of

the local computer.

Logoff()

Syntax Logoff()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the FTP host.

 366  Chapter 5. WebLOAD Internet Protocols Reference

Logon()

Syntax Logon(host, [port])

Parameters

host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a

port, the default FTP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a conversation with the FTP host. If you are logging on to a

restricted site, you must have specified the UserName and

PassWord properties before using this method.

MakeDir()

Syntax MakeDir(name)

Parameters

name The name of the new directory that you are creating.

Return Value Null if successful, an exception if unsuccessful.

Comments Creates a new directory beneath the current directory on the host.

RemoveDir()

Syntax RemoveDir(name)

Parameters

name The name of the directory that you are deleting.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the named directory from the host.

Note: You may not delete a directory until that directory is

empty. Remove all files from the directory before using the

RemoveDir() method. You may use the Delete() method

to delete files on the host.

Rename()

Syntax Rename(from, to)

Parameters

from The file that you want to rename.

JavaScript Reference Guide  367 

to The new file name for the file. If this file already exists, it is

overwritten.

Return Value Null if successful, an exception if unsuccessful.

Comments Renames the files in the current directory described by the from

parameter to the name described in the to parameter.

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

Upload()

Syntax Upload(pattern)

Parameters

pattern The file you are uploading. This may be a specific file name, or it

may contain wildcards.

Return Value Null if successful, an exception if unsuccessful.

Comments Uses a loop to upload the local files specified by the pattern

parameter to the host. The file is not renamed, and values

specified by the DataFile and Data property are ignored. If an

iteration of the loop fails, the loop is cancelled, potentially leaving

some files not transported.

UploadFile()

Syntax UploadFile(filename)

Parameters

filename The destination name of the local file. This parameter may be the

same name as the local file name, or it may be used to rename the

file once it arrives at the host.

Return Value Null if successful, an exception if unsuccessful.

 368  Chapter 5. WebLOAD Internet Protocols Reference

Comments Uploads a local file to the host. The local file is specified by the

DataFile property. The destination file name is specified by the

filename parameter. If the DataFile property is not specified,

then the contents of the Data property are sent as a datastream

to be saved under the name specified by the filename

parameter.

UploadUnique()

Syntax UploadUnique()

Return Value A string containing the name of the newly created file if

successful, an exception if unsuccessful.

Comments Uploads data or a file to a newly created, unique file on the host.

The file name is created by the host, and returned as a string

value. The local file is specified by the DataFile property. If the

DataFile property is not specified, then the contents of the Data

property are sent as a datastream.

WLFtps()

Syntax new WLFtps()

Return Value A new wlFTPs object.

Comments Creates a new wlFTPs object, used to interact with the server.

Example function InitClient(){

myNewFtpsObject = new WLFtps()

}

wlHtmMailer Object

The wlHtmMailer object provides support for HTM Mail load and functional testing

within WebLOAD. Support for standard HTM Mail operation is included. HTM Mail

over secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception is thrown.

You must include catch and try functions in your script to handle exceptions when

using the wlHtmMailer object. If you do not, the object may cause your script to

freeze. A sample catch appears in the wlHtmMailer code sample at the end of this

section.

JavaScript Reference Guide  369 

To access the wlHtmMailer object, you must include the wlHtmMailer.js file in

your InitAgenda() function.

wlHtmMailer Properties

AttachmentsArr

The AttachmentsArr property lets you specify one or more attachments for an email.

The filename variable should contain the name of the local file or datastream that

you want to attach to the posting. For example:

wlHtmMailer.Attachments[0] = filename

Bcc

The Bcc property lets you specify the email addresses of additional recipients to be

blind copied in an email. You may specify multiple addresses in a semicolon-separated

list. You must specify this property with every email. Addresses may be specified in

the format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

wlHtmMailer.Bcc = blindcopyaddresses

Cc

The Cc property lets you specify the email addresses of additional recipients to be

copied in an email. You may specify multiple addresses in a semicolon-separated list.

You must specify this property with every email. Addresses may be specified in the

format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

wlHtmMailer.Cc = copyaddress; copyaddress

From

The From property lets you describe the Reply To in plain language. You may use this

property to identify your Reply To email address in a plain language format. For

example:

wlHtmlMailer.From = replyname

Host

The Host property lets you specify a host for use in sending HTML email messages.

 370  Chapter 5. WebLOAD Internet Protocols Reference

HtmlFilePath

The HtmlFilePath property specifies the full path directory location of the files

associated with the email message.

HtmlText

The HtmlText property contains the HTML-formatted version of the email message,

for example, potentially including embedded images. The corresponding plain text

version of the email message is provided in the Message property.

Message

The Message property contains the plain text version of the email message. If there is

a corresponding HTML-formatted version, for example, including embedded images,

this version is provided in the HtmlText property.

MessageDate

The MessageDate property contains the date of the email message.

ReplyTo

The ReplyTo property lets you specify the return address of your email. You may

specify multiple addresses in a semicolon-separated list. Addresses may be specified in

the format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

wlHtmMailer.ReplyTo = replyaddress

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = wlHtmMailer.Size

Subject

The Subject property lets you specify the text appearing the subject field of your

email. You use this property to provide a brief description of the contents of your

email. For example:

wlHtmMailer.Subject = subjectheader

JavaScript Reference Guide  371 

To

The To property lets you specify a recipient's email address. You may specify multiple

addresses in a semicolon-separated list. You must specify this property with every

email. Addresses may be specified in the format of "Me@MyCompany.com" or as "My

Name <Me@MyCompany.com>". For example:

wlHtmMailer.To = recipientaddress; recipientaddress

wlHtmMailer Methods

AddAttachment()

Syntax AddAttachment(string, type, [encoding])

Parameters

string The string you are sending to the host. If you are sending a file,

the string is the location and name of the file. If you are sending a

data attachment, the string is the data to be attached.

type The type of attachment you are sending. Valid values are:

File (default)

Data

[encoding] The type of encoding to apply to the file. Valid values are:

7Bit (default)

Quoted

Base64

8Bit

8BitBinary

Return Value Returns an integer value Attachment ID if successful, an

exception if unsuccessful.

Comments Adds an attachment to the message.

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may describe the host

using its DNS number, or by giving its name.

[port] The port to which you are connecting. If you do not specify a

port, the default session port is used.

Return Value Null if successful, an exception if unsuccessful.

 372  Chapter 5. WebLOAD Internet Protocols Reference

Comments Starts a new session with the host.

DeleteAttachment()

Syntax DeleteAttachment(string)

Parameters

string The ID of the attachment you are deleting.

Return Value Null if successful, an exception if unsuccessful.

Comments Removes an attachment from the article.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the host.

DisplayMetrics()

Syntax DisplayMetrics()

Return Value A string with the current metrics values.

Comments Displays all the information gathered from the last command or

data transfer.

GetLocalHost()

Syntax GetLocalHost()

Return Value Identification information for the currently active local host.

Comments Returns identification information for the current local host.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the latest response string if successful, an

exception if unsuccessful.

Comments Returns the latest response string from the host.

Send()

Syntax Send()

Return Value Null if successful, an exception if unsuccessful.

JavaScript Reference Guide  373 

Comments Sends mail to recipients, attaching files using MIME as necessary.

After sending the attachments, data is deleted.

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

SetLocalHost()

Syntax SetLocalHost(hostname)

Parameters

hostname Identification information for the new local host.

Return Value Assigns a new value for the local host.

Comments Defines the local host from which the emails are being sent.

Verify()

Syntax Verify()

Return Value Returns a 1 if the address is valid, a 0 if the address is invalid. If

the method is unable to verify the address due to authentication

or other reasons, it returns an exception.

Comments Checks that the address in the To property is valid. To use this

method, include only one address in the To property.

WLHtmMailer()

Syntax new WLHtmMailer()

Return Value A new wlHtmMailer object.

Comments Creates a new wlHtmMailer object, used to interact with the

server.

Example function InitClient() {

myNewHtmMailerObject = new WLHtmMailer();

}

 374  Chapter 5. WebLOAD Internet Protocols Reference

wlIMAP Object

The wlIMAP object provides support for IMAP4 (Internet Message Access Protocol)

load and functional testing within WebLOAD. Support for standard IMAP operation is

included. IMAP over secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception is thrown.

To access the wlIMAP object, you must include the wlImap.js file in your

InitAgenda() function.

wlIMAP Properties

CurrentMessage

The CurrentMessage property returns the number of the current message. You use

this property to track the current message in relation to other messages on the host. For

example:

var currentmessagenumber = imap.CurrentMessage

CurrentMessageID

The CurrentMessageID property returns the ID of the current message. You use

this property to track the current message in relation to other messages on the host. For

example:

var messagenumber = imap.CurrentMessageID

document

The document property is an object with four properties:

 Headers – A string containing the header of the message

 MessageText – A string containing the text of the message

 Size – An integer describing the size of the message in bytes

 Attachments – An array of objects, with each attachment existing as an object

with the following properties:

 contentencoding – The encoding of the attachment

 contenttype – The content type of the attachment

 filename – The file name of the attachment

JavaScript Reference Guide  375 

 messagetext – The text of the attachment

 partname – The part name of the message

 size – The size of the attachment in bytes

For example:

var recentdocument = imap.document

var messageheaders = recentdocument.MessageHeaders

var messagetext = recentdocument.MessageText

var messagesize = recentdocument.MessageSize

var messageattachments = recentdocument.attachments

Mailbox

The Mailbox property specifies the name of the mailbox with which you want to

interact. You use this property to create, edit, and delete mailboxes. For example:

imap.Mailbox = mailboxname

MaxLines

The MaxLines property lets you specify the maximum number of lines per email to

retrieve from an IMAP host. You use this property to specify the number of lines to

retrieve from each email. For example:

imap.Maxlines = numberoflines

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save a file or message locally on your computer. When you write to the

Outfile, you overwrite the existing content. To avoid overwriting the existing

content, you must specify a new Outfile each time you write. For example:

imap.Outfile = filename

PassWord

The PassWord property lets you specify a password when logging on to a host. You

use this property to log onto a restricted IMAP host. WebLOAD automatically sends

the password to the IMAP host when a wlIMAP object connects to an IMAP host. For

example:

imap.PassWord = password

 376  Chapter 5. WebLOAD Internet Protocols Reference

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = imap.Size

UserName

The UserName property lets you specify a User ID when logging on to a host. You use

this property to log onto a restricted IMAP host. WebLOAD automatically sends the

user name to the IMAP host when a wlIMAP object connects to an IMAP host. For

example:

imap.UserName = username

wlIMAP Methods

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may describe the host

using its DNS number, or by giving its name.

port The port to which you are connecting. If you do not specify a

port, the default IMAP port (port 143) is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts an IMAP session with the host. When you connect, you are

connecting to a specific mailbox within the host, as specified by

your User ID.

CreateMailbox()

Syntax CreateMailbox()

Return Value Null if successful, an exception if unsuccessful.

Comments Creates the mailbox specified in the Mailbox property. The

created mailboxes continue to exist after the end of the script. To

remove a mailbox, use the DeleteMailbox() method.

JavaScript Reference Guide  377 

Delete()

Syntax Delete([MessageSet])

Parameters

MessageSet The identifier of the message you want to delete. You may specify

a single message number, or you may specify a range, separated

by a colon. For example, 1:10 deletes messages one through ten. If

you do not specify a message ID, the current message is deleted.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the message with the corresponding ID. If no ID is

specified, then the current message is deleted.

DeleteMailbox()

Syntax DeleteMailbox()

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the mailbox specified in the Mailbox property.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the IMAP host.

GetMessageCount()

Syntax GetMessageCount()

Return Value A string containing the number of messages on the host if

successful, an exception if unsuccessful.

Comments Returns the number of messages waiting on the host.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the latest response string if successful, an

exception if unsuccessful.

Comments Returns the latest response string from the host.

 378  Chapter 5. WebLOAD Internet Protocols Reference

ListMailboxes()

Syntax ListMailboxes(pattern)

Parameters

pattern The mailbox that you want to appear in the list. This may be a

specific name, or it may contain wildcards.

Return Value A string listing the matching mailboxes if successful, an exception

if unsuccessful.

Comments Lists mailboxes matching the pattern parameter.

RecentMessageCount()

Syntax RecentMessageCount()

Return Value A string containing the number of new messages on the host if

successful, an exception if unsuccessful.

Comments Returns the number of new messages waiting on the host.

RenameMailbox()

Syntax RenameMailbox(string)

Parameters

string The new name for the mailbox.

Return Value Null if successful, an exception if unsuccessful.

Comments Renames the mailbox specified in the Mailbox property.

Retrieve()

Syntax Retrieve([MessageSet])

Parameters

MessageSet The identifier of the message you want to retrieve. You may

specify a single message number, or you may specify a range,

separated by a colon. For example, 1:10 returns messages one

through ten. If you do not specify a message ID, the next message

is returned.

Return Value A document for each message specified if successful, an exception

if unsuccessful.

Comments Returns the message with the corresponding ID. If no ID is

specified, then the next message is returned.

JavaScript Reference Guide  379 

Search()

Syntax Search(string)

Parameters

string

The criteria for your search. Valid values are:

ALL – All messages in the mailbox - this is the default initial key

for AND-ing.

ANSWERED – Messages with the \\Answered flag set.

BCC – Messages that contain the specified string in the envelope

structure's BCC field.

BEFORE – Messages whose internal date is earlier than the

specified date.

BODY – Messages that contain the specified string in the body of

the message.

CC – Messages that contain the specified string in the envelope

structure's CC field.

DELETED – Messages with the \\Deleted flag set.

DRAFT – Messages with the \\Draft flag set.

FLAGGED – Messages with the \\Flagged flag set.

FROM – Messages that contain the specified string in the

envelope structure's FROM field.

HEADER – Messages that have a header with the specified field-

name (as defined in) and that contains the specified string in the

field-body.

KEYWORD – Messages with the specified keyword set.

LARGER – Messages with an size larger than the specified

number of octets.

 380  Chapter 5. WebLOAD Internet Protocols Reference

 NEW Messages that have the \\Recent flag set but not the

\\Seen flag. This is functionally equivalent to "(RECENT

UNSEEN)".

NOT – Messages that do not match the specified search key.

OLD – Messages that do not have the \\Recent flag set. This is

functionally equivalent to "NOT RECENT" (as opposed to "NOT

NEW").

ON – Messages whose internal date is within the specified date.

OR – Messages that match either search key.

RECENT – Messages that have the \\Recent flag set.

SEEN – Messages that have the \\Seen flag set.

SENTBEFORE – Messages whose Date: header is earlier than the

specified date.

SENTON – Messages whose Date: header is within the specified

date.

SENTSINCE – Messages whose Date: header is within or later

than the specified date.

SINCE – Messages whose internal date is within or later than the

specified date.

SMALLER – Messages with an RFC822.SIZE smaller than the

specified number of octets.

SUBJECT – Messages that contain the specified string in the

envelope structure's SUBJECT field.

TEXT – Messages that contain the specified string in the header or

body of the message.

TO – Messages that contain the specified string in the envelope

structure's TO field.

UID – Messages with unique identifiers corresponding to the

specified unique identifier set.

UNANSWERED – Messages that do not have the \\Answered

flag set.

UNDELETED – Messages that do not have the \\Deleted flag set.

UNDRAFT – Messages that do not have the \\Draft flag set.

UNFLAGGED – Messages that do not have the \\Flagged flag

set.

UNKEYWORD – Messages that do not have the specified

keyword set.

UNSEEN – Messages that do not have the \\Seen flag set.

JavaScript Reference Guide  381 

Return Value A string containing the IDs of messages that meet the search

criteria if successful, an exception if unsuccessful.

Comments Searches the current mailbox for messages meeting the specified

search criteria.

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

SubscribeMailbox()

Syntax SubscribeMailbox()

Return Value Null if successful, an exception if unsuccessful.

Comments Subscribes to the mailbox specified in the Mailbox property.

UnsubscribeMailbox()

Syntax UnsubscribeMailbox()

Return Value Null if successful, an exception if unsuccessful.

Comments Unsubscribes from the mailbox specified in the Mailbox

property.

WLImap()

Syntax new WLImap()

Return Value A new wlIMAP object.

Comments Creates a new wlIMAP object, used to interact with the server.

Example function InitClient() {

myNewImapObject = new WLImap()

myNewImapObject.Connect("HostName")

}

 382  Chapter 5. WebLOAD Internet Protocols Reference

IMAP Sample Code

// script Initialization

function InitAgenda() {

IncludeFile("wlImap.js",WLExecuteScript)

}

function InitClient() {

imap=new WLImap() // create the new IMAP object

// imap.Connect("HostName"); // connect to the server

}

function TerminateClient() {

imap.Disconnect(); // logout from the server

delete imap // delete the IMAP object

}

//===

// Body Of script

InfoMessage("Speed: "+wlGlobals.ConnectionSpeed)

wlGlobals.Debug=1;

imap.UserName="UserID";

imap.PassWord="TopSecret";

imap.Mailbox="Inbox";

imap.Connect("00.0.0.00");

//==

//Test Retrieve

/*imap.Retrieve("100");

for (var i = 0; i < imap.wlSource.length; i++)

{

InfoMessage(imap.wlSource[i]);

InfoMessage(imap.document.length);

InfoMessage(imap.document[i].headers);

InfoMessage(imap.document[i].messageText);

InfoMessage(imap.document[i].size);

InfoMessage(imap.document[i].attachments.length);

for (var j = 0; j < imap.document[i].attachments.length; j++)

{

InfoMessage(imap.document[i].attachments[j].contentEncoding);

InfoMessage(imap.document[i].attachments[j].contentType);

InfoMessage(imap.document[i].attachments[j].filename);

InfoMessage(imap.document[i].attachments[j].messageText);

InfoMessage(imap.document[i].attachments[j].partName);

InfoMessage(imap.document[i].attachments[j].size);

}

JavaScript Reference Guide  383 

}*/

//===

//Test Delete

imap.Mailbox="Inbox";

InfoMessage(imap.GetMessageCount());

imap.Mailbox="Inbox";

imap.Delete("2");

imap.Mailbox="Inbox";

InfoMessage(imap.GetMessageCount());

//==

//Test Mailbox Functions:

// list mailboxes, create mailbox, and then list again

/*InfoMessage("mailboxes are:")

var v1 = imap.ListMailboxes();

for(var i=0; i < v1.length; i++)

InfoMessage(v1[i]);

imap.Mailbox="mailboxname";

imap.CreateMailbox();

InfoMessage("mailboxes are:")

var v1 = imap.ListMailboxes();

for(var i=0; i < v1.length; i++)

InfoMessage(v1[i]);

*/

//===

// subscribe mailbox, list all subscribed mailboxes

//imap.Mailbox="mailboxname";

//imap.SubscribeMailbox();

/*InfoMessage("subscribed mailboxes are:")

var v2 = imap.ListSubscribedMailboxes();

for(var j=0; j < v2.length; j++)

{

InfoMessage(v2[j]);

imap.Mailbox=v2[j];

}*/

//===

// list subscribed mailboxes,unsubscribe mailbox,

// and then list all subscribed mailboxes again

/*InfoMessage("subscribed mailboxes are:")

var v2 = imap.ListSubscribedMailboxes();

for(var j=0; j < v2.length; j++)

{

InfoMessage(v2[j]);

 384  Chapter 5. WebLOAD Internet Protocols Reference

imap.Mailbox=v2[j];

}

imap.Mailbox="mailboxname";

imap.UnsubscribeMailbox();

InfoMessage("subscribed mailboxes are:")

var v2 = imap.ListSubscribedMailboxes();

for(var j=0; j < v2.length; j++)

{

InfoMessage(v2[j]);

imap.Mailbox=v2[j];

}

*/

//==

// list mailboxes, rename mailbox,

// and then list mailboxes again

/*InfoMessage("mailboxes are:")

var v1 = imap.ListMailboxes();

for(var i=0; i < v1.length; i++)

InfoMessage(v1[i]);

imap.Mailbox="boxname";

imap.RenameMailbox("newName");

InfoMessage("mailboxes are:")

var v1 = imap.ListMailboxes();

for(var i=0; i < v1.length; i++)

InfoMessage(v1[i]);

*/

//==

// get number of messages from a mailbox

/*imap.Mailbox="main";

InfoMessage(imap.GetMessageCount());

imap.Mailbox="Inbox";

InfoMessage(imap.GetRecentMessageCount());

*/

//==

// delete mailbox and list all the mailboxes

/*imap.Mailbox="mailboxname";

imap.DeleteMailbox();

InfoMessage("subscribed mailboxes are:")

var v2 = imap.ListSubscribedMailboxes();

for(var j=0; j < v2.length; j++)

{

InfoMessage(v2[j]);

imap.Mailbox=v2[j];

}

JavaScript Reference Guide  385 

*/

//===

// search

/*imap.Mailbox="Inbox";

var found = imap.Search("CC user@address.com");

InfoMessage("found:")

for(var j=0; j < found.length; j++)

{

InfoMessage(found[j]);

}

catch (e)

{

InfoMessage ("Error" + e)

}

*/

//===

imap.Disconnect();

delete imap

InfoMessage("done")

wlNNTP Object

The wlNNTP (Network News Transfer Protocol) object provides support for NNTP

load and functional testing within WebLOAD. Support for standard NNTP operation

is included. NNTP over secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception is thrown.

You must include catch and try functions in your script to handle exceptions when

using the wlNNTP object. If you do not, the object may cause your script to freeze. A

sample catch appears in the NNTP code sample at the end of this section.

To access the wlNNTP object, you must include the wlNntp.js file in your

InitAgenda() function.

 386  Chapter 5. WebLOAD Internet Protocols Reference

wlNNTP Properties

ArticleText

The ArticleText property lets you specify the text appearing in the body of your

article. You use this property to write the text of the article itself. For example:

nntp.ArticleText = articlecontent

Attachments

The Attachments property lets you specify an attachment to a posting. The

filename variable should contain the name of the local file or datastream that you

want to attach to the posting. For example:

nntp.Attachments = filename

AttachmentsEncoding

The AttachmentsEncoding property lets you specify the type of encoding you are

applying to a message attachment. This property must be specified for each

attachment. Valid values are:

 7Bit

 Quoted

 Base64

 8Bit

 8BitBinary

You may also specify the encoding using the following constants:

 WLNntp.ENC_7BIT – 7bit encoding

 WLNntp.ENC_QUOTED – Quoted Printable encoding

 WLNntp.ENC_BASE64 – Base64 encoding

 WLNntp.ENC_8BIT – 8Bit encoding

 WLNntp.ENC_8BITBINARY – Binary encoding

For example:

nntp.AttachmentsEncoding = encodingtype

JavaScript Reference Guide  387 

AttachmentsTypes

The AttachmentsTypes property lets you specify the type of attachment you are

including in a posting. This property must be specified for each attachment. Valid

values are:

 true – Specifies a type of file

 false – Specifies a type of data

For example:

nntp.AttachmentsTypes = typeofattachment

Document

The Document property is an object with two properties. One is a string,

MessageText containing the text of the article, and the other is an array containing

the article attachments and headers. For example:

var recentdocument = nntp.document

var messagetext = recentdocument.MessageText

var messageattachments = recentdocument.attachments

var firstattachment = messageattachments[0]

var secondattachment = messageattachments[1]

From

The From property lets you describe the Reply To in plain language. You may use this

property to identify your Reply To email address in a plain language format. For

example:

nntp.From = replyname

Group

The Group property specifies the article group with which you are interacting. You use

this to limit searches, posts, and other activities to a specific group. For example:

nntp.Group = groupname

MaxHeadersLength

The MaxHeadersLength property lets you specify the maximum length for headers

in an article. You use this property to prevent line folding. For example:

nntp.MaxHeadersLength = headersize

 388  Chapter 5. WebLOAD Internet Protocols Reference

Organization

The Organization property identifies the affiliation of the author. You use this

property to identify your professional or personal affiliation. For example:

nntp.Organization = organizationname

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save a file or article locally on your computer. For example:

nntp.Outfile = filename

PassWord

The PassWord property lets you specify a password when logging on to a host. You

use this property to log onto a restricted NNTP host. WebLOAD automatically sends

the password to the NNTP host when a wlNNTP object connects to an NNTP host. For

example:

nntp.PassWord = password

Caution: The password appears in plain text in the script. The password is visible to

any user who has access to the script.

References

The References property lets you specify articles that the posted article follows. You

use this property to create a thread of related articles. If the resulting reference header

is longer than the limit specified in the MaxHeadersLength property, it is folded.

References must be separated by commas with no spaces in between. For example:

nntp.References = article1,article2

ReplyTo

The ReplyTo property lets you specify the reply address for additional postings. For

example:

nntp.ReplyTo = replyaddress

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = nntp.Size

JavaScript Reference Guide  389 

Subject

The Subject property lets you specify the text appearing the subject field of your

email. You use this property to provide a brief description of the contents of your

article. For example:

nntp.Subject = subjectheader

To

The To property lets you specify the newsgroup to receive your posting. You may

specify multiple addresses in a semicolon-separated list. You must specify this

property with every article. For example:

nntp.To = alt.newsgroup.name; rec.newsgroup.name

UserName

The UserName property lets you specify a User ID when logging on to a host. You use

this property to log onto a restricted NNTP host. WebLOAD automatically sends the

user name to the NNTP host when a wlNNTP object connects to an NNTP host. For

example:

nntp.UserName = username

wlNNTP Methods

AddAttachment()

Syntax AddAttachment(string, type, [encoding])

Parameters

string The string you are sending to the host. If you are sending a file,

the string is the location and name of the file. If you are sending a

data attachment, the string is the data to be attached.

type The type of attachment you are sending. Valid values are:

File (default)

Data

[encoding] The type of encoding to apply to the file. Valid values are:

7Bit (default)

Quoted

Base64

8Bit

8BitBinary

 390  Chapter 5. WebLOAD Internet Protocols Reference

Return Value Returns an integer value Attachment ID if successful, an

exception if unsuccessful.

Comments Adds an attachment to the message.

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may describe the host

using its DNS number, or by giving its name.

[port] The port to which you are connecting. If you do not specify a

port, the default session port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a new session with the host.

DeleteAttachment()

Syntax DeleteAttachment(string)

Parameters

string The ID of the attachment you are deleting.

Return Value Null if successful, an exception if unsuccessful.

Comments Removes an attachment from the article.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the host.

GetArticle()

Syntax GetArticle(messageNumber)

Parameters

message

Number

The number of the message that you want to retrieve.

Return Value Null if successful. The article is stored in the document property.

An exception if unsuccessful.

JavaScript Reference Guide  391 

Comments Gets the headers and body of the article specified in the

messageNumber parameter for the group specified in the Group

property. If the Outfile property is specified, the returned

article is stored in the output file as well as in the document

property.

GetArticleCount()

Syntax GetArticleCount()

Return Value An integer count of the number of articles in the group if

successful, an exception if unsuccessful.

Comments Returns the number of articles in the group specified by the

Group property.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the latest response string if successful, an

exception if unsuccessful.

Comments Returns the latest response string from the host.

GroupOverview()

Syntax GroupOverview([range])

Parameters

[range] The range for articles you want to view. The format for range is

first-last, where first is "" (an empty string) or positive number,

and last is "", a positive number, or the token end.

Return Value An array of objects if successful. Each object contains one article,

and the properties articleDate, articleLines,

articleNumber, from, messageID, otherHeaders,

references, and subject. The method returns an exception if

unsuccessful.

Comments Returns an overview for the articles in range for the group

specified in the Group property.

ListGroups()

Syntax ListGroups([startDate])

Parameters

 392  Chapter 5. WebLOAD Internet Protocols Reference

[startDate] The earliest creation date to search. Groups created before this

date are not listed. If you do not specify a start date, all groups are

listed.

The format for startDate is YYMMDD HHMMSS.

Return Value An array of objects if successful. Each object contains the

following properties, Canpost, lastArticle, firstArticle,

and group. The method returns an exception if unsuccessful.

Comments Lists the newsgroups available on the host.

PostArticle()

Syntax PostArticle()

Return Value Null if successful. The article is stored in the document property.

An exception if unsuccessful.

Comments Posts the article to the host, attaching files using MIME as

necessary. The article is constructed using the following

properties and methods:

Header Properties

From

Subject

Organization

To

ReplyTo

References

MaxHeadersLength

Body Properties/Methods

ArticleText()

AddAttachment()

DeleteAttachment()

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

JavaScript Reference Guide  393 

WLNntp()

Syntax new WLNntp()

Return Value A new wlNNTP object.

Comments Creates a new wlNNTP object, used to interact with the server.

Example myNewNntpObject = new WLNntp()

NNTP Sample Code

// script Initialization

function InitAgenda() {

IncludeFile("wlNntp.js",WLExecuteScript)

}

//===

//Body Of script

InfoMessage("Speed: "+wlGlobals.ConnectionSpeed)

nntp=new WLNntp()

wlGlobals.Debug=1;

InfoMessage("before login")

nntp.UserName="UserID"

nntp.PassWord="TopSecret"

nntp.Connect("hostname")

//===

//Test ListGoups

/*v = nntp.ListGroups();

InfoMessage(v.length);

for (var i = 0; i < v.length; i++)

{

InfoMessage("canPost = "+v[i].canPost);

InfoMessage("first article = "+v[i].firstArticle);

InfoMessage("group = "+v[i].group);

InfoMessage("last article = "+v[i].lastArticle);

}

*/

//===

//Test GroupOverview

/*nntp.Group="alt.groupname";

v = nntp.GroupOverview();

InfoMessage(v.length);

for (var i = 0; i < v.length; i++)

 394  Chapter 5. WebLOAD Internet Protocols Reference

{

InfoMessage("article date = "+v[i].articleDate);

InfoMessage("article lines = "+v[i].articleLines);

InfoMessage("article number = "+v[i].articleNumber);

InfoMessage("article size = "+v[i].articleSize);

InfoMessage("from = "+v[i].from);

InfoMessage("messageId = "+v[i].messageId);

InfoMessage("other headers = "+v[i].otherHeaders);

InfoMessage("references = "+v[i].references);

InfoMessage("subject = "+v[i].subject);

}

*/

//===

//Test GetArticleCount

//nntp.Group="alt.groupname";

//InfoMessage(nntp.GetArticleCount());

nntp.Group="alt.groupname";

InfoMessage(nntp.GetArticleCount());

//===

//Test GetArticle

/*nntp.Group="alt.groupname";

nntp.Outfile="c:\\temp\\article.txt";

nntp.GetArticle(1);

InfoMessage(nntp.document);

*/

//==

//Test post article

nntp.From="poster name";

nntp.Subject="nntp test posting";

nntp.Organization="OrgName";

nntp.To="control.cancel, alt.groupname";

nntp.ReplyTo="poster@organization.org";

nntp.References="<referenceID@server.organization.org>";

nntp.MaxHeadersLength=100;

nntp.ArticleText="hello world";

//id1 = nntp.AddAttachment

// ("c:\\temp\\file1.txt", "file", WLNntp.ENC_7BIT);

//id2 = nntp.AddAttachment

// ("c:\\temp\\file2.txt", "file", WLNntp.ENC_7BIT);

//id5 = nntp.AddAttachment

// ("c:\\downloded.gif", "file", WLNntp.ENC_BASE64);

JavaScript Reference Guide  395 

//id3 = nntp.AddAttachment

// ("c:\\temp\\file3.txt", "file", WLNntp.ENC_7BIT);

//id4 = nntp.AddAttachment

// ("c:\\temp\\file4.txt", "file", WLNntp.ENC_7BIT);

//nntp.DeleteAttachment(id3);

//nntp.DeleteAttachment(id1);

//nntp.DeleteAttachment(id4);

try //catch to handle exceptions

{

nntp.PostArticle();

}

catch (e)

{

InfoMessage ("Error" + e)

}

//==

//InfoMessage(nntp.GetStatusLine());

nntp.Disconnect()

delete nntp

InfoMessage("done")

wlPOP Object

The wlPOP object provides support for POP3 (Post Office Protocol) load and functional

testing within WebLOAD. Support for standard POP operation is included. POP over

secure connections (SSL) is supported through the wlPOPs Object (on page 402).

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception is thrown.

To access the wlPOP object, you must include the wlPop.js file in your

InitAgenda() function.

wlPOP Properties

AutoDelete

The AutoDelete property lets you specify whether or not to automatically delete an

email once it has been read. You use this property to save or remove messages from

your host. For example:

pop.AutoDelete = status

 396  Chapter 5. WebLOAD Internet Protocols Reference

document

The document property is an object with four properties:

 Headers – A string containing the header of the message

 MessageText – A string containing the text of the message

 Size – An integer describing the size of the message in bytes

 Attachments – An array of objects, with each attachment existing as an object

with the following properties:

 contentencoding – The encoding of the attachment

 contenttype – The content type of the attachment

 filename – The file name of the attachment

 messagetext – The text of the attachment

 partname – The part name of the message

 size – The size of the attachment in bytes

For example:

var recentdocument = pop.document

var messageheaders = recentdocument.MessageHeaders

var messagetext = recentdocument.MessageText

var messagesize = recentdocument.MessageSize

var messageattachments = recentdocument.attachments

Headers[]

The Headers property is an array of objects containing header information from the

host. Each object contains a key and an array of headers. For example:

var headersvalue = pop.Headers[0]

var headerskey=headersvalue.key

var headerstringvalues=headersvalue.values[0]

MaxLines

The MaxLines property lets you specify the maximum number of lines per email to

retrieve from a POP host. You use this property to specify the number of lines to

retrieve from each email. For example:

pop.Maxlines = numberoflines

JavaScript Reference Guide  397 

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save a file or message locally on your computer. When you write to the

Outfile, you overwrite the existing content. To avoid overwriting the existing

content, you must specify a new Outfile each time you write. For example:

pop.Outfile = filename

PassWord

The PassWord property lets you specify a password when logging on to a host. You

use this property to log onto a restricted POP host. WebLOAD automatically sends the

password to the POP host when a wlPOP object connects to a POP host. For example:

pop.PassWord = password

Caution: The password appears in plain text in the script. The password is visible to

any user who has access to the script.

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption For example:

var filesize = pop.Size

UserName

The UserName property lets you specify a User ID when logging on to a host. You use

this property to log onto a restricted POP host. WebLOAD automatically sends the

user name to the POP host when a wlPOP object connects to a POP host. For example:

pop.UserName = username

wlSource

The wlSource property contains the encoded multipart source of the message. This is

the format in which the message is stored in the Outfile property. For example:

var messagesource = pop.wlSource

 398  Chapter 5. WebLOAD Internet Protocols Reference

wlPOP Methods

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may describe the host

using its DNS number, or by giving its name.

[port] The port to which you are connecting. If you do not specify a

port, the default POP port is used.

Return Value An exception if unsuccessful. On success the return value is

undefined.

Comments Starts a POP session with the host. When you connect, you are

connecting to a specific mailbox within the host, as specified by

your UserID.

Delete()

Syntax Delete([MessageID])

Parameters

messageID The identifier of the message you want to delete. If you do not

specify a message ID, the current message is deleted.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the message with the corresponding ID. If no ID is

specified, then the current message is deleted.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the POP server.

GetCurrentMessageID()

Syntax GetCurrentMessageID()

Return Value The ID of the current message if successful, an exception if

unsuccessful.

Comments Returns the ID of the current message.

JavaScript Reference Guide  399 

GetMailboxSize()

Syntax GetMailboxSize()

Return Value A string describing the size of the mailbox in bytes if successful.

Comments Returns the total size of the mailbox in bytes.

GetMessageCount()

Syntax GetMessageCount()

Return Value A string containing the number of messages on the host if

successful.

Comments Returns the number of messages waiting on the host.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the latest response string if successful, an

exception if unsuccessful.

Comments Returns the latest response string from the host.

Reset()

Syntax Reset()

Return Value Null if successful, an exception if unsuccessful.

Comments Undoes all actions, including deletions, returning the host to its

state at the start of the session. If this call is not made,

disconnecting from the POP host applies all actions.

Retrieve()

Syntax Retrieve([MessageID])

Parameters

MessageID The identifier of the message you want to retrieve. If you do not

specify a message ID, the next message is returned.

Return Value Returns the message and populates the document property.

Comments Returns the message with the corresponding ID. If no ID is

specified, then the next message is returned

 400  Chapter 5. WebLOAD Internet Protocols Reference

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

WLPop()

Syntax new WLPop()

Return Value A new wlPOP object.

Comments Creates a new wlPOP object, used to interact with the server.

Example var myNewPopObject = new WLPop();

POP Sample Code

// script Initialization

function InitAgenda() {

IncludeFile("wlPop.js",WLExecuteScript)

}

/*function InitClient() {

}*/

/*function TerminateClient() {

delete pop;

}*/

//===

//Body Of script.

//InfoMessage("Speed: "+wlGlobals.ConnectionSpeed)

wlGlobals.Debug=1

var pop=new WLPop();

pop.UserName="UserID"

pop.PassWord="TopSecret"

pop.Connect("00.0.0.00");

//==

//Test General Functions

/*count = pop.GetMessageCount();

JavaScript Reference Guide  401 

InfoMessage("number of messages= "+ count);

count = pop.GetMailboxSize();

InfoMessage("size= "+ count);

status = pop.GetStatusLine();

InfoMessage("status= "+ status);

pop.SendCommand("hello");

status = pop.GetStatusLine();

InfoMessage("status= "+ status);

*/

//===

//Test Delete And Reset

//two tests:

//1. if run as is, # of msgs should remain the same

//2. if run with pop.Reset commented out, # of msgs should be

smaller

InfoMessage("number of messages= "+ pop.GetMessageCount());

//InfoMessage(pop.GetCurrentMessageID);

//pop.MaxLines=0;

pop.Delete(15);

InfoMessage("number of messages= "+ pop.GetMessageCount());

//InfoMessage(pop.GetCurrentMessageID);

//pop.Reset();

pop.Disconnect();

pop.Connect("00.0.0.00")

InfoMessage(pop.GetStatusLine());

//InfoMessage(pop.GetCurrentMessageID);

InfoMessage("number of messages= "+ pop.GetMessageCount());

//==

//Test Retrieve

//InfoMessage("number of messages= "+ pop.GetMessageCount());

//InfoMessage(pop.GetCurrentMessageID);

//pop.AutoDelete=true

/*pop.Outfile="*.xyz";

//pop.MaxLines=0;

var count = pop.GetMessageCount();

InfoMessage(count);

for(var w = 1; w <= count; w++)

{

pop.Retrieve(w);

InfoMessage(pop.document.headers);

InfoMessage(pop.document.messageText);

InfoMessage(pop.document.size);

 402  Chapter 5. WebLOAD Internet Protocols Reference

InfoMessage(pop.document.attachments.length);

for (var j = 0; j < pop.document.attachments.length; j++)

{

InfoMessage(pop.document.attachments[j].contentEncoding);

InfoMessage(pop.document.attachments[j].contentType);

InfoMessage(pop.document.attachments[j].filename);

InfoMessage(pop.document.attachments[j].messageText);

InfoMessage(pop.document.attachments[j].partName);

InfoMessage(pop.document.attachments[j].size);

}

InfoMessage("Headers:");

for (var i = 0; i < pop.Headers.length; i++)

{

for (var j = 0; j < pop.Headers[i].values.length; j++)

{

InfoMessage(pop.Headers[i].key + " = " +

 pop.Headers[i].values[j]);

}

}

InfoMessage("body"+pop.wlSource);

}*/

catch (e)

{

InfoMessage ("Error" + e)

}

pop.Disconnect();

//==

wlPOPs Object

The wlPOPs object provides support for POP3 (Post Office Protocol) load and

functional testing over secure connections (SSL).

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception is thrown.

To access the wlPOPs object, you must include the wlPops.js file in your

InitAgenda() function.

JavaScript Reference Guide  403 

wlPOPs Properties

AutoDelete

The AutoDelete property lets you specify whether or not to automatically delete an

email once it has been read. You use this property to save or remove messages from

your host. For example:

pop.AutoDelete = status

document

The document property is an object with four properties:

 Headers – A string containing the header of the message

 MessageText – A string containing the text of the message

 Size – An integer describing the size of the message in bytes

 Attachments – An array of objects, with each attachment existing as an object

with the following properties:

 contentencoding – The encoding of the attachment

 contenttype – The content type of the attachment

 filename – The file name of the attachment

 messagetext – The text of the attachment

 partname – The part name of the message

 size – The size of the attachment in bytes

For example:

var recentdocument = pop.document

var messageheaders = recentdocument.MessageHeaders

var messagetext = recentdocument.MessageText

var messagesize = recentdocument.MessageSize

var messageattachments = recentdocument.attachments

Headers[]

The Headers property is an array of objects containing header information from the

host. Each object contains a key and an array of headers. For example:

var headersvalue = pop.Headers[0]

var headerskey=headersvalue.key

var headerstringvalues=headersvalue.values[0]

 404  Chapter 5. WebLOAD Internet Protocols Reference

MaxLines

The MaxLines property lets you specify the maximum number of lines per email to

retrieve from a POP host. You use this property to specify the number of lines to

retrieve from each email. For example:

pop.Maxlines = numberoflines

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save a file or message locally on your computer. When you write to the

Outfile, you overwrite the existing content. To avoid overwriting the existing

content, you must specify a new Outfile each time you write. For example:

pop.Outfile = filename

PassWord

The PassWord property lets you specify a password when logging on to a host. You

use this property to log onto a restricted POP host. WebLOAD automatically sends the

password to the POP host when a wlPOP object connects to a POP host. For example:

pop.PassWord = password

Caution: The password appears in plain text in the script. The password is visible to

any user who has access to the script.

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption For example:

var filesize = pop.Size

UserName

The UserName property lets you specify a User ID when logging on to a host. You use

this property to log onto a restricted POP host. WebLOAD automatically sends the

user name to the POP host when a wlPOP object connects to a POP host. For example:

pop.UserName = username

JavaScript Reference Guide  405 

wlSource

The wlSource property contains the encoded multipart source of the message. This is

the format in which the message is stored in the Outfile property. For example:

var messagesource = pop.wlSource

wlPOPs Methods

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may describe the host

using its DNS number, or by giving its name.

[port] The port to which you are connecting. If you do not specify a

port, the default POP port is used.

Return Value An exception if unsuccessful. On success the return value is

undefined.

Comments Starts a POP session with the host. When you connect, you are

connecting to a specific mailbox within the host, as specified by

your UserID.

Delete()

Syntax Delete([MessageID])

Parameters

messageID The identifier of the message you want to delete. If you do not

specify a message ID, the current message is deleted.

Return Value Null if successful, an exception if unsuccessful.

Comments Deletes the message with the corresponding ID. If no ID is

specified, then the current message is deleted.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the POP server.

GetCurrentMessageID()

Syntax GetCurrentMessageID()

 406  Chapter 5. WebLOAD Internet Protocols Reference

Return Value The ID of the current message if successful, an exception if

unsuccessful.

Comments Returns the ID of the current message.

GetMailboxSize()

Syntax GetMailboxSize()

Return Value A string describing the size of the mailbox in bytes if successful.

Comments Returns the total size of the mailbox in bytes.

GetMessageCount()

Syntax GetMessageCount()

Return Value A string containing the number of messages on the host if

successful.

Comments Returns the number of messages waiting on the host.

GetStatusLine()

Syntax GetStatusLine()

Return Value A string containing the latest response string if successful, an

exception if unsuccessful.

Comments Returns the latest response string from the host.

Reset()

Syntax Reset()

Return Value Null if successful, an exception if unsuccessful.

Comments Undoes all actions, including deletions, returning the host to its

state at the start of the session. If this call is not made,

disconnecting from the POP host applies all actions.

Retrieve()

Syntax Retrieve([MessageID])

Parameters

MessageID The identifier of the message you want to retrieve. If you do not

specify a message ID, the next message is returned.

Return Value Returns the message and populates the document property.

JavaScript Reference Guide  407 

Comments Returns the message with the corresponding ID. If no ID is

specified, then the next message is returned

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

WLPops()

Syntax new WLPops()

Return Value A new wlPOPs object.

Comments Creates a new wlPOPs object, used to interact with the server.

Example var myNewPopObject = new WLPops();

wlSMTP Object

The wlSMTP object provides support for Simple Mail Transfer Protocol (SMTP) load

and functional testing within WebLOAD. Support for standard SMTP operation is

included. SMTP over secure connections (SSL) is supported through the wlSMTPs

Object (on page 414).

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception should be thrown.

To access the wlSMTP object, you must include the wlSmtp.js file in your

InitAgenda() function.

 408  Chapter 5. WebLOAD Internet Protocols Reference

wlSMTP Properties

Attachments

The Attachments property lets you specify an attachment to an email message. The

filename parameter is the name of the local file or datastream that you want to attach

to the email message. For example:

smtp.Attachments = filename

AttachmentsEncoding

The AttachmentsEncoding property lets you specify the type of encoding you are

applying to an email attachment. This property must be specified for each attachment.

Valid values are:

 7Bit

 Quoted

 Base64

 8Bit

 8BitBinary

You may also specify the encoding using the following constants:

 WLSmtp.ENC_7BIT – 7bit encoding

 WLSmtp.ENC_QUOTED – Quoted Printable encoding

 WLSmtp.ENC_BASE64 – Base64 encoding

 WLSmtp.ENC_8BIT – 8Bit encoding

 WLSmtp.ENC_8BITBINARY – Binary encoding

For example:

smtp.AttachmentsEncoding = encodingtype

AttachmentsTypes

The AttachmentsTypes property lets you specify the type of attachment you are

including in an email message. This property must be specified for each attachment.

Valid values are:

 true – Specifies a type of file

 false – Specifies a type of data

JavaScript Reference Guide  409 

For example:

smtp.AttachmentsTypes = typeofattachment

Bcc

The Bcc property lets you specify the email addresses of additional recipients to be

blind copied in an email. You may specify multiple addresses in a semicolon-separated

list. You must specify this property with every email. Addresses may be specified in

the format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

smtp.Bcc = blindcopyaddresses

Cc

The Cc property lets you specify the email addresses of additional recipients to be

copied in an email. You may specify multiple addresses in a semicolon-separated list.

You must specify this property with every email. Addresses may be specified in the

format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

smtp.Cc = copyaddress; copyaddress

From

The From property lets you describe the Reply To in plain language. You may use this

property to identify your Reply To email address in a plain language format. For

example:

smtp.From = replyname

Message

The Message property lets you specify the text appearing in the body of your email.

You use this property to write the text of the email message itself.

ReplyTo

The ReplyTo property lets you specify the return address of your email. You may

specify multiple addresses in a semicolon-separated list. Addresses may be specified in

the format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

smtp.ReplyTo = replyaddress

 410  Chapter 5. WebLOAD Internet Protocols Reference

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = smtp.Size

Subject

The Subject property lets you specify the text appearing the subject field of your

email. You use this property to provide a brief description of the contents of your

email. For example:

smtp.Subject = subjectheader

To

The To property lets you specify a recipient’s email address. You may specify multiple

addresses in a semicolon-separated list. You must specify this property with every

email. Addresses may be specified in the format of "Me@MyCompany.com" or as "My

Name <Me@MyCompany.com>". For example:

smtp.To = recipientaddress; recipientaddress

Type

The Type property lets you specify the type of server with which you are working. The

default value for this property is SMTP. Valid values are:

 SMTP – A standard STMP server

 ESMTP – An extended SMTP server

For example:

smtp.Type = servertype

wlSMTP Methods

AddAttachment()

Syntax AddAttachment(string, type, [encoding])

Parameters

String The string you are sending to the host. If you are sending a file,

the string is the location and name of the file. If you are sending a

data attachment, the string is the data to be attached.

JavaScript Reference Guide  411 

Type The type of attachment you are sending. The default value is

File. Valid values are:

 File

 Data

encoding The type of encoding to apply to the file. The default value is

7Bit. Valid values are:

 7Bit

 Quoted

 Base64

 8Bit

 8BitBinary

Return Value Returns an integer value Attachment ID if successful, an

exception if unsuccessful.

Comments Adds an attachment to the email message.

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a

port, the default SMTP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts an SMTP session with the host.

DeleteAttachment()

Syntax DeleteAttachment(ID)

Parameters

ID The ID of the attachment you are deleting.

Return Value Null if successful, an exception if unsuccessful.

Comments Removes an attachment from the email message.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

 412  Chapter 5. WebLOAD Internet Protocols Reference

Comments Terminates a connection to the SMTP host.

Send()

Syntax Send()

Return Value Null if successful, an exception if unsuccessful.

Comments Sends mail to recipients, attaching files using MIME as necessary.

After sending the attachments, data is deleted.

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions. SendCommand automatically appends

“\r\n” at the end of the string. You can add additional instances

of “\r\n” within the string, however do not add “\r\n” at the

end of the string. For example, SendCommand(“Line1\r\n

Line2\r\n Line3”)

Verify()

Syntax Verify()

Return Value Returns a 1 if the address is valid, a 0 if the address is invalid. If

the method is unable to verify the address due to authentication

or other reasons, it returns an exception.

Comments Checks that the address in the To property is valid. To use this

method, include only one address in the To property.

WLSmtp()

Syntax new WLSmtp()

Return Value A new wlSMTP object.

Comments Creates a new wlSMTP object, used to interact with the server.

Example function InitClient() {

myNewSmtpObject = new WLSmtp()

}

JavaScript Reference Guide  413 

SMTP Sample Code

// script Initialization

function InitAgenda() {

IncludeFile("wlSmtp.js",WLExecuteScript)

 // include the file that enables SMTP

}

function InitClient() {

Smtp=new WLSmtp() // create the new SMTP object

Smtp.Connect("HostName"); // connect to the server

}

function TerminateClient() {

Smtp.Disconnect(); // logout from the server

delete Smtp // delete the SMTP object

}

//==

// Body Of script

//Test Send Attachments

Smtp.To=" \"Recipient Name\" <Recipient@recipient.com>";

Smtp.From= "Sender@sender.com";

Smtp.Cc="Copy1@copy.here.org, Copy2@copy.there.org";

 // multiple CC's

Smtp.ReplyTo="Sender@sender.com";

 // optional different reply to address

Smtp.Subject="Message Subject "; // Text string

Smtp.Message="Greetings from the wlSMTP class"; // Message text

// Add attachments from local file using different

// encoding techniques

// 7BIT are text files, the BASE64 is for a binary file

// (in this case an image)

id1 = Smtp.AddAttachment

 ("c:\\file1.txt","file",WLSmtp.ENC_7BIT);

id2 = Smtp.AddAttachment

 ("c:\\file2.txt","file",WLSmtp.ENC_7BIT);

id3 = Smtp.AddAttachment

 ("c:\\file3.txt","file",WLSmtp.ENC_7BIT);

id4 = Smtp.AddAttachment

 ("c:\\file4.txt","file",WLSmtp.ENC_7BIT);

id5 = Smtp.AddAttachment

 ("c:\\downloded.gif","file",WLSmtp.ENC_BASE64);

// You may delete attachments prior to sending the mail message

Smtp.DeleteAttachment(id3);

Smtp.DeleteAttachment(id1);

 414  Chapter 5. WebLOAD Internet Protocols Reference

Smtp.DeleteAttachment(id4);

Smtp.Send(); // and send it!

InfoMessage(Smtp.GetStatusLine());

 // print out the last response from the server

catch (e)

{

InfoMessage ("Error" + e)

}

//===

InfoMessage("done") // End of SMTP sample script

wlSMTPs Object

The wlSMTP object provides support for SMTP (Mail Transfer Protocol) load and

functional testing over secure connections (SSL).

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception should be thrown.

To access the wlSMTPs object, you must include the wlSMTPs.js file in your

InitAgenda() function.

wlSMTPs Properties

Attachments

The Attachments property lets you specify an attachment to an email message. The

filename parameter is the name of the local file or datastream that you want to attach

to the email message. For example:

smtp.Attachments = filename

AttachmentsEncoding

The AttachmentsEncoding property lets you specify the type of encoding you are

applying to an email attachment. This property must be specified for each attachment.

Valid values are:

 7Bit

 Quoted

 Base64

 8Bit

JavaScript Reference Guide  415 

 8BitBinary

You may also specify the encoding using the following constants:

 WLSmtp.ENC_7BIT – 7bit encoding

 WLSmtp.ENC_QUOTED – Quoted Printable encoding

 WLSmtp.ENC_BASE64 – Base64 encoding

 WLSmtp.ENC_8BIT – 8Bit encoding

 WLSmtp.ENC_8BITBINARY – Binary encoding

For example:

smtp.AttachmentsEncoding = encodingtype

AttachmentsTypes

The AttachmentsTypes property lets you specify the type of attachment you are

including in an email message. This property must be specified for each attachment.

Valid values are:

 true – Specifies a type of file

 false – Specifies a type of data

For example:

smtp.AttachmentsTypes = typeofattachment

Bcc

The Bcc property lets you specify the email addresses of additional recipients to be

blind copied in an email. You may specify multiple addresses in a semicolon-separated

list. You must specify this property with every email. Addresses may be specified in

the format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

smtp.Bcc = blindcopyaddresses

Cc

The Cc property lets you specify the email addresses of additional recipients to be

copied in an email. You may specify multiple addresses in a semicolon-separated list.

You must specify this property with every email. Addresses may be specified in the

format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

smtp.Cc = copyaddress; copyaddress

 416  Chapter 5. WebLOAD Internet Protocols Reference

From

The From property lets you describe the Reply To in plain language. You may use this

property to identify your Reply To email address in a plain language format. For

example:

smtp.From = replyname

Message

The Message property lets you specify the text appearing in the body of your email.

You use this property to write the text of the email message itself.

ReplyTo

The ReplyTo property lets you specify the return address of your email. You may

specify multiple addresses in a semicolon-separated list. Addresses may be specified in

the format of "Me@MyCompany.com" or as "My Name <Me@MyCompany.com>". For

example:

smtp.ReplyTo = replyaddress

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = smtp.Size

Subject

The Subject property lets you specify the text appearing the subject field of your

email. You use this property to provide a brief description of the contents of your

email. For example:

smtp.Subject = subjectheader

To

The To property lets you specify a recipient's email address. You may specify multiple

addresses in a semicolon-separated list. You must specify this property with every

email. Addresses may be specified in the format of "Me@MyCompany.com" or as "My

Name <Me@MyCompany.com>". For example:

smtp.To = recipientaddress; recipientaddress

JavaScript Reference Guide  417 

Type

The Type property lets you specify the type of server with which you are working. The

default value for this property is SMTP. Valid values are:

 SMTP – A standard STMP server

 ESMTP – An extended SMTP server

For example:

smtp.Type = servertype

wlSMTPs Methods

AddAttachment()

Syntax AddAttachment(string, type, [encoding])

Parameters

String The string you are sending to the host. If you are sending a file,

the string is the location and name of the file. If you are sending a

data attachment, the string is the data to be attached.

Type The type of attachment you are sending. The default value is

File. Valid values are:

 File

 Data

encoding The type of encoding to apply to the file. The default value is

7Bit. Valid values are:

 7Bit

 Quoted

 Base64

 8Bit

 8BitBinary

Return Value Returns an integer value Attachment ID if successful, an

exception if unsuccessful.

Comments Adds an attachment to the email message.

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

 418  Chapter 5. WebLOAD Internet Protocols Reference

port The port to which you are connecting. If you do not specify a

port, the default SMTP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts an SMTP session with the host.

DeleteAttachment()

Syntax DeleteAttachment(ID)

Parameters

ID The ID of the attachment you are deleting.

Return Value Null if successful, an exception if unsuccessful.

Comments Removes an attachment from the email message.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the SMTP host.

Send()

Syntax Send()

Return Value Null if successful, an exception if unsuccessful.

Comments Sends mail to recipients, attaching files using MIME as necessary.

After sending the attachments, data is deleted.

SendCommand()

Syntax SendCommand(string)

Parameters

string The string you are sending to the host.

Return Value Null if successful, an exception if unsuccessful.

Comments Sends a string to the host without modification. This method is

useful for interacting directly with the host using non-standard or

unsupported extensions.

Verify()

Syntax Verify()

JavaScript Reference Guide  419 

Return Value Returns a 1 if the address is valid, a 0 if the address is invalid. If

the method is unable to verify the address due to authentication

or other reasons, it returns an exception.

Comments Checks that the address in the To property is valid. To use this

method, include only one address in the To property.

WLSmtps()

Syntax new WLSmtps()

Return Value A new wlSMTPs object.

Comments Creates a new wlSMTPs object, used to interact with the server.

Example function InitClient() {

myNewSmtpObject = new WLSmtps()

}

wlTCP Object

The wlTCP object provides support for TCP (Transfer Control Protocol) load and

functional testing within WebLOAD. Support for standard TCP operation is included.

TCP over secure connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method; otherwise an exception is thrown.

To access the wlTCP object, you must include the wlTcp.js file in your

InitAgenda() function.

wlTCP Properties

document

The document property contains all responses from the host since the last time the

Send() method was used. Each time a message is returned, it is concatenated to the

document object. The document may be cleared manually using the Erase()

method. For example:

var recentdocument = tcp.document

 420  Chapter 5. WebLOAD Internet Protocols Reference

InBufferSize

The InBufferSize property specifies the size, in bytes, of the incoming data buffer.

To remove this setting, either delete the property, or set it to a negative value. For

example:

tcp.InBufferSize = maximuminsize

LocalPort

The LocalPort property specifies the TCP port to which you are connecting. If you

do not specify the LocalPort property, you connect to a randomly selected port. For

example:

tcp.LocalPort = portnumber

NextPrompt

The NextPrompt property specifies the text for the script to look for in the next

prompt from the host. A Receive() call is viewed as successful if the prompt

contains the text string specified by the NextPrompt variable. To specify a prompt

with no message, specify a NextPrompt with an empty value, or delete the

NextPrompt property. Once this property is specified, it limits all subsequent

instances of the Receive() method. Either delete the property or set it to zero to

remove the limitation. For example:

tcp.NextPrompt = promptmessage

NextSize

The NextSize property specifies the size, in bytes, of the expected data. If you specify

a NextSize of 100 bytes, for example, the Receive() method returns to the script

when the document object contains 100 bytes of data. Once this property is specified, it

limits all subsequent instances of the Receive() method. Either delete the property or

set it to zero to remove the limitation. For example:

tcp.NextSize = expectedsize

OutBufferSize

The OutBufferSize property specifies the size, in bytes, of the outgoing data buffer.

To remove this setting, either delete the property, or set it to a negative value. For

example:

tcp.OutBufferSize = maximumoutsize

JavaScript Reference Guide  421 

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save the responses from the host locally on your computer. You must

specify the output file before calling the Receive() method to save the responses to

that file.

You write to the output file each time you use the Receive() method. If you call the

Receive() method more than once, you must specify a different output file each

time, or you overwrite the previous output file. For example:

tcp.Outfile = filename

ReceiveMessageText

The ReceiveMessageText property returns the reason why the host stopped

responding. You use this property to determine the state of the host. Possible values

are:

 Prompt was found – The host returned the prompt specified in the NextPrompt

property.

 Timeout – The last command exceeded the time limit specified by the Timeout

property.

 Byte length reached – The host received the amount of data specified in the

NextSize property.

For example:

InfoMessage(TCP.ReceiveMessageText);

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = tcp.Size

Timeout

The Timeout property lets you specify the length of the delay, in milliseconds, before

the script breaks its connection with the host. If you do not specify the timeout

property, the script may freeze if the host does not respond as you expect it to. To set

an unlimited timeout, specify a value of zero, or a negative value. For example:

tcp.Timeout = timedelay

 422  Chapter 5. WebLOAD Internet Protocols Reference

Note: It is recommended that you include a Timeout property in all scripts that use

the wlTCP object. If you do not, and the script fails to return a prompt, your session

may freeze.

wlTCP Methods

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a

port, the default TCP port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a TCP session with the host.

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful.

Comments Terminates a connection to the TCP host.

Erase()

Syntax Erase()

Return Value Null if successful, an exception if unsuccessful.

Comments Clears the contents of the document object.

Receive()

Syntax Receive()

Return Value Null if successful, an exception if unsuccessful.

JavaScript Reference Guide  423 

Comments Returns all responses from the host since the last time the Send()

method was used. A Receive() method returns to the script

when the NextPrompt, NextSize, or Timeout properties are

met. If more than one of these properties is specified, the method

returns to the script when the first one is met. Subsequent uses of

Receive() find the next instance of the limiting property,

returning additional information from the buffer. The content

returned depends upon which of the three limiting properties

triggered the return.

Send()

Syntax Send(data_to_send)

Parameters

data_to_send The data that you want to send to the host.

Return Value A string containing the response from the host if successful, an

exception if unsuccessful.

Comments Sends data to the host via TCP and clears the document object.

WLTcp()

Syntax new WLTcp()

Return Value A new wlTCP object.

Comments Creates a new wlTCP object, used to interact with the server.

Example function InitClient() {

myNewTcpObject = new WLTcp();

}

TCP Sample Code

// script Initialization

function InitAgenda() {

IncludeFile("wlTcp.js",WLExecuteScript)

}

function InitClient() {

tcp=new WLTcp();

}

function TerminateClient()

{

delete tcp;

}

//===

 424  Chapter 5. WebLOAD Internet Protocols Reference

//Body Of script.

InfoMessage("Speed: "+wlGlobals.ConnectionSpeed)

wlGlobals.Debug=1;

tcp.Outfile = "c:\\tcp.txt";

tcp.Timeout = 2000;

tcp.NextPrompt = "\r\n\r\n";

//tcp.NextSize=1900;

//===

try

{

tcp.Connect("www.sitename.com", 80);

tcp.Send("GET /products/index.htm HTTP/1.0\r\n\r\n");

//Sleep(3000);

tcp.Receive();

InfoMessage(tcp.document);

InfoMessage(tcp.ReceiveMessageText);

tcp.NextSize=10091;

tcp.NextPrompt="";

tcp.Erase();

tcp.Receive();

InfoMessage(tcp.document);

InfoMessage(tcp.ReceiveMessageText);

}

catch(e)

{

InfoMessage(e);

}

//==

InfoMessage("done");

wlTelnet Object

The wlTelnet object provides support for Telnet load and functional testing within

WebLOAD. Support for standard Telnet operation is included. Telnet over secure

connections (SSL) is not currently supported.

If a connection is required but has expired or has not yet been established, the

underlying code attempts to login. Logging in requires you to call the appropriate

Connect() method otherwise an exception is thrown.

To access the wlTelnet object, you must include the wlTelnet.js file in your

InitAgenda() function.

JavaScript Reference Guide  425 

wlTelnet Properties

document

The document property contains all responses from the host since the last time the

Send() method was used. Each time a message is returned, it is concatenated to the

document object. The document may be cleared manually using the Erase()

method. For example:

var recentdocument = telnet.document

NextPrompt

The NextPrompt property specifies the text for the Agenda to look for in the next

prompt from the host. A Receive() call is viewed as successful if the prompt

contains the text string specified by the NextPrompt variable. To specify a prompt

with no message, specify a NextPrompt with an empty value, or delete the

NextPrompt property. Once this property is specified, it limits all subsequent

instances of the Receive() method. Either delete the property or set it to zero to

remove the limitation. For example:

telnet.NextPrompt = promptmessage

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save the responses from the host locally on your computer. You must

specify the output file before calling the Receive() method to save the responses to

that file.

You write to the output file each time you use the Receive() method. If you call the

Receive() method more than once, you must specify a different output file each

time, or you overwrite the previous output file. For example:

telnet.Outfile = filename

ReceiveMessageText

The ReceiveMessageText property returns the reason why the host stopped

responding. You use this property to determine the state of the host. Possible values

are:

 Prompt was found – The host returned the prompt specified in the NextPrompt

property.

 Timeout – The last command exceeded the time limit specified by the Timeout

property.

 426  Chapter 5. WebLOAD Internet Protocols Reference

 Byte length reached – The host received the amount of data specified in the

NextSize property.

For example:

InfoMessage(Telnet.ReceiveMessageText);

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = telnet.Size

Timeout

The Timeout property lets you specify the length of the delay, in milliseconds, before

the script breaks its connection with the host. If you do not specify the timeout

property, the script may freeze if the host does not respond as you expect it to. To set

an unlimited timeout, specify a value of zero, or a negative value. For example:

telnet.Timeout = timedelay

Note: It is recommended that you include a Timeout property in all scripts that use

the wlTelnet object. If you do not, and the script fails to return a prompt, your

session may freeze.

wlTelnet Methods

Connect()

Syntax Connect(host, [port])

Parameters

host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

port The port to which you are connecting. If you do not specify a

port, the default Telnet port is used.

Return Value Null if successful, an exception if unsuccessful.

Comments Starts a Telnet session with the host.

JavaScript Reference Guide  427 

Disconnect()

Syntax Disconnect()

Return Value Null if successful, an exception if unsuccessful

Comments Terminates a connection to the Telnet host.

Erase()

Syntax Erase()

Return Value Null if successful, an exception if unsuccessful.

Comments Clears the contents of the document object.

Receive()

Syntax Receive()

Return Value Null if successful, an exception if unsuccessful.

Comments Returns all responses from the host since the last time the Send()

method was used. A Receive() method returns to the script

when the NextPrompt, NextSize, or Timeout properties are

met. If more than one of these properties is specified, the method

returns to the script when the first one is met. Subsequent uses of

Receive() find the next instance of the limiting property,

returning additional information from the buffer. The content

returned depends upon which of the three limiting properties

triggered the return.

Send()

Syntax Send(data_to_send)

Parameters

data_to_send The data that you want to send to the host.

Return Value A string containing the response from the host if successful, an

exception if unsuccessful.

Comments Sends data to the host via Telnet and clears the document object.

WLTelnet()

Syntax new WLTelnet()

Return Value A new wlTelnet object.

Comments Creates a new wlTelnet object, used to interact with the server.

 428  Chapter 5. WebLOAD Internet Protocols Reference

Example function InitClient() {

myNewTelnetObject = new WLTelnet()

}

Telnet Sample Code

// script Initialization

function InitAgenda() {

IncludeFile("wlTelnet.js",WLExecuteScript)

 // include the file that enables Telnet

}

function InitClient() {

Telnet=new WLTelnet() // create a new telnet object

}

function TerminateClient()

{

delete Telnet // delete the object we were using

}

//==

// Body Of script

// Set timeout and prompt

// IMPORTANT: Set a timeout when setting a prompt. Otherwise,

// If the prompt is unexpected or incorrect the script will

// freeze while waiting for a prompt that will never arrive

Telnet.Timeout=1000; // one second

Telnet.NextPrompt="User name: "; // text to look for

Telnet.Connect("000.0.0.0"); // connect

Telnet.Receive(); // wait for data from the remote host

Telnet.Send("myname"); // send login name

InfoMessage(Telnet.document); // write out the data received

InfoMessage(Telnet.ReceiveMessageText);

 // write out why the call returned

Telnet.NextPrompt="Password: "; // next prompt to look for

Telnet.Receive(); // wait for data

Telnet.Outfile="c:\\filename.txt";

 // save this next response to file as well

InfoMessage(Telnet.document); // what did we get?

InfoMessage(Telnet.ReceiveMessageText);

 // write out why the call returned

Telnet.Send("mypassword"); // send password

Telnet.NextPrompt=">"; // new prompt to wait for

Telnet.Receive(); // wait for a response

Telnet.Send("command"); // send command text to the host

JavaScript Reference Guide  429 

Telnet.Receive(); // wait for a response

InfoMessage(Telnet.document); // what did we get?

InfoMessage(Telnet.ReceiveMessageText);

 // write out why the call returned

Telnet.Disconnect(); // finally disconnect

//==

//This is another way to work with telnet. When no prompt

//is set the timeout is ignored. Instead the script writer

//must manually keep receiving the data by calling the receive

//command. Receive() returns the response as well as assigning

//the value to the this.document property. It is up to the user

//to perform a delay before he/she receives the data.

Telnet.Connect("000.0.0.0"); // log in to a remote host

// In this case we receive three times.

// In your script you may keep calling Receive() until the

// telnet object's document property contains the data you are

// looking for, or until you decide to do something else

Telnet.Receive(); // fetch the data

Telnet.Receive(); // Wait for more

Telnet.Receive(); // Wait for more

InfoMessage(Telnet.document); // Contains text from ALL receives

InfoMessage(Telnet.ReceiveMessageText); // reason calls returned

Telnet.Send("Command"); // clears the document object

Telnet.Receive(); // fetch the data

Telnet.Receive(); // Wait for more

Telnet.Receive(); // Wait for more

InfoMessage(Telnet.document);

InfoMessage(Telnet.ReceiveMessageText);

Telnet.Send("command");

Telnet.Receive();

Telnet.Receive(); // Wait for more

Telnet.Receive(); // Wait for more

InfoMessage(Telnet.document);

InfoMessage(Telnet.ReceiveMessageText);

Telnet.Send("dir");

Telnet.Receive();

Telnet.Receive(); // Wait for more

Telnet.Receive(); // Wait for more

InfoMessage(Telnet.document);

InfoMessage(Telnet.ReceiveMessageText);

catch (e)

{

InfoMessage ("Error" + e)

}

 430  Chapter 5. WebLOAD Internet Protocols Reference

Telnet.Disconnect(); // log out from the remote host

InfoMessage("done") // End of telnet sample script

wlUDP Object

The wlUDP object provides support for UDP (User Datagram Protocol) load and

functional testing within WebLOAD. Support for standard UDP operation is included.

UDP over secure connections (SSL) is not currently supported.

To access the wlUDP object, you must include the wlUdp.js file in your

InitAgenda() function.

wlUDP Properties

document

The document property is an array of objects sent in the current session, with each

object containing the following properties:

 datagram – The datagram retrieved from the database

 address – The address of the datagram

 port – The port used to communicate with the database

The document property contains all responses from the host since the last time the

Send() method was used. Each time a message is returned, it is concatenated to the

document object. The document may be cleared manually using the Erase()

method. For example:

var recentdocument = udp.document

InBufferSize

The InBufferSize property specifies the size, in bytes, of the incoming data buffer.

For example:

udp.InBufferSize = maximuminsize

LocalHost

The LocalHost property lets you specify a local host for use in broadcasting via UDP.

For example:

udp.LocalHost = localhostname

JavaScript Reference Guide  431 

LocalPort

The LocalPort property specifies the UDP port to which you are connecting. If you

do not specify the LocalPort property, you connect to a randomly selected port. For

example:

udp.LocalPort = portnumber

MaxDatagramSize

The MaxDatagramSize property specifies the maximum size, in bytes, of datagrams

that you may send or receive via UDP. For example:

udp.MaxDatagramSize = maximumsize

NumOfResponses

The NumOfResponses property specifies the number of responses the testing machine

waits for before proceeding. You use this property to make sure that all of your hosts

have responded. To specify an unlimited number of responses, specify a

NumOfResponses value of zero. For example:

udp.NumOfResponses = numberofhosts

OutBufferSize

The OutBufferSize property specifies the size, in bytes, of the outgoing data buffer.

For example:

udp.OutBufferSize = maximumoutsize

Outfile

The Outfile property lets you specify the name of an output file. You use this

property to save the responses from the host locally on your computer. You must

specify the output file before calling the Receive() method to save the responses to

that file.

You write to the output file each time you use the Receive() method. If you call the

Receive() method more than once, you must specify a different output file each

time, or you will overwrite the previous output file. For example:

udp.Outfile = filename

 432  Chapter 5. WebLOAD Internet Protocols Reference

ReceiveMessageText

The ReceiveMessageText property returns the reason why the host stopped

responding. You use this property to determine the state of the host. Possible values

are:

 Prompt received – The host returned a prompt and is waiting for further

instructions.

 Timeout – The last command exceeded the limit specified by the Timeout

property.

 No prompt specified – The host is unable to return a prompt. Often, this means

there is an error in the script.

For example:

InfoMessage(udp.ReceiveMessageText);

RequestedPackets

The RequestedPackets property specifies the number of packets the testing

machine waits for before proceeding. To specify an unlimited number of packets,

specify a RequestedPackets value of zero. For example:

udp.RequestedPackets = numberofpackets

Size

The Size property returns the byte length of data transferred to the host. You use this

property to compare starting and finishing sizes to verify that files have arrived

without corruption. For example:

var filesize = udp.Size

Timeout

The Timeout property lets you specify the length of the delay, in milliseconds, before

the script breaks its connection with the host. If you do not specify the timeout

property, the script may freeze if the host does not respond as you expect it to. For

example:

udp.Timeout = timedelay

Note: It is recommended that you include a Timeout property in all scripts that use

the wlUDP object. If you do not, and the script fails to return a prompt, your session

may freeze.

JavaScript Reference Guide  433 

wlUDP Methods

Bind()

Syntax Bind()

Return Value Null if successful, an exception if unsuccessful.

Comments Creates a UDP port and sets the OutBufferSize,

InBufferSize, MaxDatagramSize, LocalHost, and

LocalPort properties. The value of these properties is fixed

when the Bind() method is used. To change the value of any of

these properties, you must use the UnBind() method, change the

value of the property and using the Bind() method again.

Broadcast()

Syntax Broadcast(port, data_to_send)

Parameters

Port The port to which you are connecting.

data_to_send The data that you want to send to the local net.

Return Value A string containing the response from the host if successful, an

exception if unsuccessful.

Comments Broadcasts data to the local net.

Erase()

Syntax Erase()

Return Value Null if successful, an exception if unsuccessful.

Comments Clears the contents of the document property, setting it to an

empty array.

Receive()

Syntax Receive()

Return Value Null if successful, an exception if unsuccessful.

Comments Returns all responses from the host since the last time the Send()

method was used. The Receive() method returns to the script

when the RequestedPackets or Timeout property is met.

Subsequent uses of Receive() find the next instance of the

limiting property, returning additional information from the

buffer.

 434  Chapter 5. WebLOAD Internet Protocols Reference

Send()

Syntax Send(host, port, data_to_send)

Parameters

Host The host to which you are connecting. You may express the host

using either the DNS number or the full name of the host.

port The port to which you are connecting.

data_to_send The data that you want to send to the host.

Return Value A string containing the response from the host if successful, an

exception if unsuccessful.

Comments Sends data to the host via UDP.

UnBind()

Syntax UnBind()

Return Value Null if successful, an exception if unsuccessful.

Comments Closes a UDP socket. You must use this command to close an

existing UDP socket before you may use the Bind() again.

WLUdp()

Syntax new WLUdp()

Return Value A new wlUDP object.

Comments Creates a new wlUDP object, used to interact with the server.

Example function InitClient() {

myNewUDPObject = new WLUdp()

}

UDP Sample Code

// script Initialization

function InitAgenda() {

IncludeFile(“wlUdp.js”,WLExecuteScript)

 // enable the UDP objects

}

function InitClient() {

udp=new WLUdp(); // create a new UDP object

}

function TerminateClient() {

delete udp // delete the UDP object

}

JavaScript Reference Guide  435 

//===

//Body Of script.

//Test Send: set the buffer sizes appropriately for the data

try

{

udp.OutBufferSize=10;

udp.InBufferSize=12;

udp.MaxDatagramSize=10;

udp.Timeout=10000; // 10 second timeout

udp.NumOfResponses=1; // return after one remote machine

responds

udp.Outfile=“c:\\serialize.txt”; // file to save responses to

udp.Bind();

udp.Send(“00.0.0.00”, 7, “good morning”);

 // send a datagram to one machine on port

7

udp.Receive(); // wait for a response

InfoMessage(udp.ReceiveMessageText); // This is what happened

// show the properties of the response

// note that the udp.document object is an array

InfoMessage(udp.document[0].datagram); // get the response

InfoMessage(udp.document[0].address); // which machine responded?

InfoMessage(udp.document[0].port); // the port

// now broadcast to seven machines

udp.NumOfResponses=7; // we expect seven machines to respond

udp.Outfile=“c:\\serialize.txt”; // send the responses

udp.Broadcast(7, “good morning”);

 // send the message (again on port 7)

udp.Receive(); // wait for the responses

InfoMessage(udp.ReceiveMessageText); // print the return reason

// For each host that responded there will be an entry

// in the array. This loop examines each one

for (var i = 0; i < udp.document.length; i++)

{

InfoMessage(“datagram= “+udp.document[i].datagram);

InfoMessage(“address= “+udp.document[i].address);

InfoMessage(“port= “+udp.document[i].port);

}

}

catch (e)

{

InfoMessage (“Error” + e)

}

//==

 436  Chapter 5. WebLOAD Internet Protocols Reference

InfoMessage(“done”) // end of the UDP sample script

JavaScript Reference Guide  437 

Chapter 6

 XML Parser Object

WebLOAD provides an embedded, third-party XML parser object to improve the

multi-platform support for XML parsing within the WebLOAD environment. The XML

parser object can be used instead of MSXML and Java XML parsing, resulting in lower

memory consumption and increased performance during load testing.

The XML parser object can be used to reference any element in an XML document. For

example, you can use the XML parser object to generate an Excel file containing the

desired details of a specified element.

WebLOAD uses the Open Source Xerces XML parser (see

http://xml.apache.org/xerces-c/).

The XML parser object is instanced as follows:

xmlObject = new XMLParserObject();

The parse() method, not exposed by the original XML parser, is exposed by

WebLOAD. This method is identical to the parseURI() method, except that it

receives an XML string instead of a URI.

The following sections provide lists of exposed methods and properties as well as a

detailed example of the implementation of the XML parser object.

Note: For additional information, refer to:

http://xml.apache.org/xerces-c/ApacheDOMC++BindingL2.html

http://xml.apache.org/xerces%1ec/
http://xml.apache.org/xerces-c/ApacheDOMC++BindingL2.html

 438  Chapter 6. XML Parser Object

Methods

The following table lists the XML parser object methods exposed by WebLOAD.

Table 6. XML Parser Object Methods

Object Method Name

xmlparser  parseURI

 parse

 resetDocumentPool

 release

 setFeature

 getFeature

 canSetFeature

 load

 loadXML

xmlAttr  getName

 getValue

 setValue

 getOwnerElement

 getSpecified

xmlCharacterData  getData

 getLength

 appendData

 setData

 substringData

 deleteData

 insertData

 replaceData

JavaScript Reference Guide  439 

Object Method Name

xmlDocument  createElement

 getElementById

 getDocumentElement

 getElementsByTagName

 createTextNode

 createDocumentFragment

 getDoctype

 createComment

 createCDATAsection

 createAttribute

 createEntityReference

 createProcessingInstruction

 createElementNS

 createAttributeNS

 getElementsByTagNameNS

 importNode

xmlDocumentType  getName

 getPublicId

 getSystemId

 getInternalSubset

 getEntities

 getNotations

 440  Chapter 6. XML Parser Object

Object Method Name

xmlElement  getElementsByTagName

 getElementsByTagNameNS

 getAttribute

 getAttributeNS

 getAttributeNode

 getAttributeNodeNS

 setAttributeNode

 setAttributeNodeNS

 getTagName

 hasAttribute

 hasAttributeNS

 removeAttribute

 removeAttributeNS

 setAttribute

 setAttributeNS

 removeAttributeNode

xmlEntity  getPublicId

 getSystemId

 getNotationName

xmlnamednodemap  getLength

 getNamedItem

 removeNamedItem

 getNamedItemNS

 removeNamedItemNS

 setNamedItem

 setNamedItemNS

 item

JavaScript Reference Guide  441 

Object Method Name

xmlnode  getNodeName

 getNodeValue

 getNodeType

 getParentNode

 getFirstChild

 getLastChild

 getPreviousSibling

 getNextSibling

 getChildNodes

 getAttributes

 getOwnerDocument

 getNamespaceURI

 getPrefix

 getLocalName

 hasChildNodes

 hasAttributes

 normalize

 release

 removeChild

 appendChild

 insertBefore

 setNodeValue

 setPrefix

 isSupported

xmlnodelist  Item

 getLength

xmlNotation  getPublicId

 getSystemId

 xmlProcessingInstruction

 getTarget

 getData

 setData

 442  Chapter 6. XML Parser Object

Properties

The following table lists the XML parser object properties exposed by WebLOAD.

Table 7. XML Parser Object Properties

Object Property Name

xmlAttr  name

 value

xmlCharacterData  length

 data

xmlDocument  documentElement

xmlElement  tagName

xmlnode  nodeName

 attributes

 childNodes

 firstChild

 lastChild

 namespaceURI

 nextSibling

 nodeType

 nodeValue

 ownerDocument

 parentNode

 prefix

 previousSibling

 nodeTypeString

 xml

xmlnodelist  length

xmlProcessingInstruction  target

 Data

JavaScript Reference Guide  443 

Example

The following is an example of the use of the XML parser object:

{

//Create the XML parser object (xerces-c parser)

xmlObject = new XMLParserObject();

//Parse the xml file from the specified path

xmlDoc = xmlObject.parseURI("C:\\xml_file.xml");

//Retrieve the first node with the “NODE5” tag

domNode = xmlDoc.getElementsByTagName("NODE5").item(0);

//Retrieve the node's type

nodeType = domNode.getNodeType();

//Retrieve the node's parent

nodeParent = domNode.getParentNode().getNodeName();

//Retrieve the number of child nodes

numOfChilds = domNode.getChildNodes().getLength();

//Create a new element

newNode1 = xmlDoc.createElement("NEW_NODE1");

//Insert the new element into DOM

domNode1.insertBefore(newNode1, domNode);

JavaScript Reference Guide  445 

Chapter 7

WebSocket Object

WebLOAD supports WebSocket, a protocol that provides full-duplex communication

channels over a single TCP connection.

Unlike HTTP which is a request-response protocol, WebSocket creates connections for

sending or receiving messages that are not dependent on one another. In this way,

WebSocket provides full-duplex communication. WebSocket also enables streams of

messages on top of TCP.

WebLOAD’s WebSocket object enables creating and managing a WebSocket

connection to a server, as well as sending and receiving data on the connection.

Note that you can create multiple WebSocket objects.

Constructor

Description

Creates a new WebSocket for the given URL, and returns a JavaScript object reference.

Syntax

<websocket object name> = new WebSocket (<URL>);

Parameters

Parameter Name Description

URL The URL to which to connect.

Example

ws1 = new WebSocket("ws://echo.websocket.org");

 446  Chapter 7. WebSocket Object

Methods

connect() (method)

Description

Creates a WebSocket connection to the given URL address. When connected, an

onopen() event is fired, as described in onopen (evt) (on page 447).

Syntax

<websocket object name>.connect()

Example

ws1.connect()

close() (method)

Description

Closes the WebSocket connection.

Syntax

<websocket object name>.close()

Example

ws1.close()

send() (method)

Description

Sends data to a WebSocket connection.

Syntax

<websocket object name>.send(data[,encoded])

Parameters

Parameter Name Description

data The data to be sent, enclosed in quote marks.

[encoded] An optional Boolean value (true or false).

 True indicates that the data contains an ASCII encoded string

in the format %xx, where xx is the hexadecimal ASCII code.

 False indicates the data does not contain an ASCII encoded

string. This is the default value.

JavaScript Reference Guide  447 

Examples

ws1.send(“hi”)

ws1.send(“next line %0A here”, true)

Events

A WebSocket emits events. An Event handler should be registered in order to react to

events.

onmessage (evt)

An event that occurs when a new message is received.

 evt.getData() – Gets the data. This can be a string or binary data.

 evt.isBinary() – Indicates whether the data is binary or not.

 evt.getEncodedData() – Gets the data in encoded format. This is useful for

binary messages.

Example

ws1.onmessage = function(evt) {

 InfoMessage(“got message “ + evt.getData())

 if (evt.isBinary()) {

 InfoMessage(“Message is binary”);

 }

}

onerror (evt)

An event that occurs when an error message is received. The default behavior is to

show a warning message with the error details.

 Evt.getData() – gets the underlying exception details.

onopen (evt)

An event that occurs when the socket is opened (connected).

Example

ws1.onopen = function(evt) {

 DebugMessage("WebSocket is opened, say hello");

 ws1.send(“hello”);

}

 448  Chapter 7. WebSocket Object

WebSocket Sample Code

// Create a WebSocket object

ws1 = new WebSocket("ws://echo.websocket.org");

// Define an event handler, to handle events (incoming messages)

when they occur

 ws1.onmessage = function(evt) {

 // Display in the Log the text that was sent in the message body

 DebugMessage("Server said:" + evt.getData());

}

// Create a websocket connection

ws1.connect();

//Note that events are handled while in Sleep

Sleep(1000);

// Send a message with the text “hi”

ws1.send("hi");

Sleep(1000);

// Close the websocket connection

ws1.close();

Sleep(1000);

JavaScript Reference Guide  449 

Appendix A

Chapter 1. WebLOAD-supported SSL Protocol
Versions

SSL Handshake Combinations

WebLOAD supports a variety of SSL versions, ranging from the earlier SSL versions

and up to the most current TLS versions. The following table illustrates the results of

different handshake combinations, depending on the Client and Server SSL version:

SSL handshake combinations

Table 8: SSL Handshake Combinations

Client setting Server Setting

 Undetermined 3.0W/2.0Hello 3.0 Only 2.0 Only

Undetermined 3.0 3.0 (a) 2.0

3.0W/2.0Hello 3.0 3.0 (a) (b)

3.0 Only 3.0 3.0 3.0 (c)

2.0 Only 3.0 3.0 3.0 2.0

Each entry specifies the negotiated protocol version. In the noted instances, negotiation

is impossible for the following reasons:

(a) These protocols all support SSL 3.0, but the SSL 3.0 Only setting on the server

prevents the SSL 2.0 Hello message sent by the client from being recognized.

(b) The SSL 2.0 Hello message sent by the client is recognized, but the SSL 2.0 Only

setting on the server sends a 2.0 response. The client rejects this response as it is set

to communicate using only SSL 3.0.

(c) The SSL 3.0 Hello message sent by the client will not be understood by the SSL 2.0

only server.

Commercial browsers and servers generally act as if they are set for

SSL_Version_Undetermined, unless SSL 2.0 is disabled, in which case they act as if

they are set for SSL_Version_3_0_With_2_0_Hello.

 450  Appendix A. Error! No text of specified style in document.

SSL Ciphers – Complete List

WebLOAD’s SSL support is based on the OpenSSL open source project

(http://www.openssl.org/). Table 9 contains a complete list of ciphers supported by

WebLOAD using OpenSSL. Abbreviations used in this list are explained in Table 10.

For information on how WebLOAD provides full SSL/TLS 1.0/TLS 1.2 protocol support

through the Cipher Command Suite, see SSL Cipher Command Suite on page 33.

The following table lists all ciphers supported by WebLOAD.

Table 9: SSL Ciphers Supported by WebLOAD

Name Mode Key Ex. Auth. Encryption
method
(key length)

Message
digest
algorithm

Export

TLS1_CK_SRP_SHA_WITH_AES_256_CBC_SHA TLS1.2 SRP SHA AES(256)-CBC SHA

TLS1_CK_SRP_SHA_RSA_WITH_AES_256_CBC_SHA TLS1.2 SRP SHA AES(256)-CBC SHA

TLS1_CK_RSA_WITH_AES_128_SHA256 TLS1.2 RSA RSA AES(128) SHA256

TLS1_CK_RSA_WITH_AES_256_SHA256 TLS1.2 RSA RSA AES(256) SHA256

TLS1_CK_DH_DSS_WITH_AES_128_SHA256 TLS1.2 DH DDS AES(128) SHA256

TLS1_CK_DH_RSA_WITH_AES_128_SHA256 TLS1.2 DH RSA AES(128) SHA256

TLS1_CK_DHE_DSS_WITH_AES_128_SHA256 TLS1.2 DHE DDS AES(128) SHA256

TLS1_CK_DHE_RSA_WITH_AES_128_SHA256 TLS1.2 DHE RSA AES(128) SHA256

TLS1_CK_DH_DSS_WITH_AES_256_SHA256 TLS1.2 DH DDS AES(256) SHA256

TLS1_CK_DH_RSA_WITH_AES_256_SHA256 TLS1.2 DH RSA AES(256) SHA256

TLS1_CK_DHE_DSS_WITH_AES_256_SHA256 TLS1.2 DHE DDS AES(256) SHA256

TLS1_CK_DHE_RSA_WITH_AES_256_SHA256 TLS1.2 DHE RSA AES(256) SHA256

TLS1_CK_ADH_WITH_AES_128_SHA256 TLS1.2 ADH None AES(128) SHA256

TLS1_CK_ADH_WITH_AES_256_SHA256 TLS1.2 ADH None AES(256) SHA256

TLS1_CK_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 RSA RSA AES(128)-GCM SHA256

TLS1_CK_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 RSA RSA AES(256) -GCM SHA384

TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 DH RSA AES(128) -GCM SHA256

TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 DH RSA AES(256) -GCM SHA384

TLS1_CK_DH_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 DH RSA AES(128) -GCM SHA256

TLS1_CK_DH_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 DH RSA AES(256-GCM SHA384

TLS1_CK_DHE_DSS_WITH_AES_128_GCM_SHA256 TLS1.2 DHE DDS AES(128) -GCM SHA256

TLS1_CK_DHE_DSS_WITH_AES_256_GCM_SHA384 TLS1.2 DHE DDS AES(256) -GCM SHA384

TLS1_CK_DH_DSS_WITH_AES_128_GCM_SHA256 TLS1.2 DH DDS AES(128) -GCM SHA256

http://www.openssl.org/

JavaScript Reference Guide  451 

Name Mode Key Ex. Auth. Encryption
method
(key length)

Message
digest
algorithm

Export

TLS1_CK_DH_DSS_WITH_AES_256_GCM_SHA384 TLS1.2 DH DDS AES(256) -GCM SHA384

TLS1_CK_ADH_WITH_AES_128_GCM_SHA256 TLS1.2 ADH None AES(128) -GCM SHA256

TLS1_CK_ADH_WITH_AES_256_GCM_SHA384 TLS1.2 ADH None AES(256) -GCM SHA384

AECDH-DES-CBC3-SHA TLS1 ECDH None 3DES(168) SHA1

ECDHE-RSA-DES-CBC3-SHA TLS1 ECDH RSA 3DES(168) SHA1

ECDH-RSA-DES-CBC3-SHA TLS1 ECDH RSA 3DES(168) SHA1

ECDHE-ECDSA-DES-CBC3-SHA TLS1 ECDH ECDSA 3DES(168) SHA1

ECDH-ECDSA-DES-CBC3-SHA TLS1 ECDH ECDSA 3DES(168) SHA1

ADH-DES-CBC3-SHA SSLv3 DH None 3DES(168) SHA1

EDH-RSA-DES-CBC3-SHA SSLv3 DH RSA 3DES(168) SHA1

EDH-DSS-DES-CBC3-SHA SSLv3 DH DSS 3DES(168) SHA1

DH-RSA-DES-CBC3-SHA SSLv3 DH/RSA DH 3DES(168) SHA1

DH-DSS-DES-CBC3-SHA SSLv3 DH/DSS DH 3DES(168) SHA1

DES-CBC3-SHA–SSL3 SSLv3 RSA RSA 3DES(168) SHA1

DES-CBC3-MD5 SSLv2 RSA RSA 3DES(168) MD5

DES-CBC3-SHA–SSL2 SSLv2 RSA RSA 3DES(192) SHA1

AECDH-AES128-SHA TLS1 ECDH None AES(128) SHA1

ECDHE-RSA-AES128-SHA TLS1 ECDH RSA AES(128) SHA1

ECDH-RSA-AES128-SHA TLS1 ECDH RSA AES(128) SHA1

ECDHE-ECDSA-AES128-SHA TLS1 ECDH ECDSA AES(128) SHA1

ECDH-ECDSA-AES128-SHA TLS1 ECDH ECDSA AES(128) SHA1

ADH-AES128-SHA TLS1 DH None AES(128) SHA1

DHE-RSA-AES128-SHA TLS1 DH RSA AES(128) SHA1

DHE-DSS-AES128-SHA TLS1 DH DSS AES(128) SHA1

DH-RSA-AES128-SHA TLS1 DH/RSA DH AES(128) SHA1

DH-DSS-AES128-SHA TLS1 DH/DSS DH AES(128) SHA1

AES128-SHA TLS1 RSA RSA AES(128) SHA1

AECDH-AES256-SHA TLS1 ECDH None AES(256) SHA1

ECDHE-RSA-AES256-SHA TLS1 ECDH RSA AES(256) SHA1

ECDH-RSA-AES256-SHA TLS1 ECDH RSA AES(256) SHA1

ECDHE-ECDSA-AES256-SHA TLS1 ECDH ECDSA AES(256) SHA1

ECDH-ECDSA-AES256-SHA TLS1 ECDH ECDSA AES(256) SHA1

ADH-AES256-SHA TLS1 DH None AES(256) SHA1

 452  Appendix A. Error! No text of specified style in document.

Name Mode Key Ex. Auth. Encryption
method
(key length)

Message
digest
algorithm

Export

DHE-RSA-AES256-SHA TLS1 DH RSA AES(256) SHA1

DHE-DSS-AES256-SHA TLS1 DH DSS AES(256) SHA1

DH-RSA-AES256-SHA TLS1 DH/RSA DH AES(256) SHA1

DH-DSS-AES256-SHA TLS1 DH/DSS DH AES(256) SHA1

AES256-SHA TLS1 RSA RSA AES(256) SHA1

EXP-ADH-DES-CBC-SHA SSLv3 DH(512) None DES(40) SHA1 

EXP-EDH-RSA-DES-CBC-SHA SSLv3 DH(512) RSA DES(40) SHA1 

EXP-EDH-DSS-DES-CBC-SHA SSLv3 DH(512) DSS DES(40) SHA1 

EXP-DH-RSA-DES-CBC-SHA SSLv3 DH/RSA DH DES(40) SHA1 

EXP-DH-DSS-DES-CBC-SHA SSLv3 DH/DSS DH DES(40) SHA1 

EXP-DES-CBC-SHA SSLv3 RSA(512) RSA DES(40) SHA1 

EXP1024-DHE-DSS-DES-CBC-SHA TLS1 DH(1024) DSS DES(56) SHA1 

EXP1024-DES-CBC-SHA TLS1 RSA(1024) RSA DES(56) SHA1 

ADH-DES-CBC-SHA SSLv3 DH None DES(56) SHA1

EDH-RSA-DES-CBC-SHA SSLv3 DH RSA DES(56) SHA1

EDH-DSS-DES-CBC-SHA SSLv3 DH DSS DES(56) SHA1

DH-RSA-DES-CBC-SHA SSLv3 DH/RSA DH DES(56) SHA1

DH-DSS-DES-CBC-SHA SSLv3 DH/DSS DH DES(56) SHA1

DES-CBC-SHA–SSL3 SSLv3 RSA RSA DES(56) SHA1

DES-CBC-SHA–SSL2 SSLv2 RSA RSA DES(64) SHA1

DES-CBC-MD5 SSLv2 RSA RSA DES(56) MD5

IDEA-CBC-SHA SSLv3 RSA RSA IDEA(128) SHA1

IDEA-CBC-MD5 SSLv2 RSA RSA IDEA(128) MD5

NULL-MD5–SSL3 SSLv3 RSA RSA None MD5

NULL-MD5–SSL2 SSLv2 RSA RSA None MD5

RC2-CBC-MD5 SSLv2 RSA RSA RC2(128) MD5

EXP-RC2-CBC-MD5 SSLv3 RSA(512) RSA RC2(40) MD5 

EXP-RC2-CBC-MD5 SSLv2 RSA(512) RSA RC2(40) MD5 

EXP1024-RC2-CBC-MD5 TLS1 RSA(1024) RSA RC2(56) MD5 

AECDH-RC4-SHA TLS1 ECDH None RC4(128) SHA1

ECDHE-RSA-RC4-SHA TLS1 ECDH RSA RC4(128) SHA1

ECDH-RSA-RC4-SHA TLS1 ECDH RSA RC4(128) SHA1

ECDHE-ECDSA-RC4-SHA TLS1 ECDH ECDSA RC4(128) SHA1

JavaScript Reference Guide  453 

Name Mode Key Ex. Auth. Encryption
method
(key length)

Message
digest
algorithm

Export

ECDH-ECDSA-RC4-SHA TLS1 ECDH ECDSA RC4(128) SHA1

DHE-DSS-RC4-SHA TLS1 DH DSS RC4(128) SHA1

ADH-RC4-MD5 SSLv3 DH None RC4(128) MD5

RC4-SHA SSLv3 RSA RSA RC4(128) SHA1

RC4-MD5–SSL3 SSLv3 RSA RSA RC4(128) MD5

RC4-MD5–SSL2 SSLv2 RSA RSA RC4(128) MD5

RC4-MD5 SSLv2 RSA RSA RC4(128) MD5

EXP-ADH-RC4-MD5 SSLv3 DH(512) None RC4(40) MD5 

EXP-RC4-MD5 SSLv3 RSA(512) RSA RC4(40) MD5 

EXP-RC4-MD5 SSLv2 RSA(512) RSA RC4(40) MD5 

EXP1024-DHE-DSS-RC4-SHA TLS1 DH(1024) DSS RC4(56) SHA1 

EXP1024-RC4-SHA TLS1 RSA(1024) RSA RC4(56) SHA1 

EXP1024-RC4-MD5 TLS1 RSA(1024) RSA RC4(56) MD5 

RC4-64-MD5 SSLv2 RSA RSA RC4(64) MD5

KRB5–DES–CBC–SHA SSLv3 KRB5 KRB5 DES(64) SHA1

KRB5-DES-CBC3-SHA SSLv3 KRB5 KRB5 DES(192) SHA1

KRB5-RC4-SHA SSLv3 KRB5 KRB5 RC4(128) SHA1

KRB5-IDEA-CBC-SHA SSLv3 KRB5 KRB5 IDEA(128) SHA1

KRB5-DES-CBC-MD5 SSLv3 KRB5 KRB5 DES(64) MD5

KRB5-DES-CBC3-MD5 SSLv3 KRB5 KRB5 DES(192) MD5

KRB5-RC4-MD5 SSLv3 KRB5 KRB5 RC4(128) MD5

KRB5-IDEA-CBC-MD5 SSLv3 KRB5 KRB5 IDEA(128) MD5

EXP-KRB5-DES-CBC-SHA SSLv3 KRB5 KRB5 DES(40) SHA1 

EXP-KRB5-RC2-CBC-SHA SSLv3 KRB5 KRB5 RC2(40) SHA1 

EXP-KRB5-RC4-SHA SSLv3 KRB5 KRB5 RC4(40) SHA1 

EXP-KRB5-DES-CBC-MD5 SSLv3 KRB5 KRB5 DES(40) MD5 

EXP-KRB5-RC2-CBC-MD5 SSLv3 KRB5 KRB5 RC2(40) MD5 

EXP-KRB5-RC4-MD5 SSLv3 KRB5 KRB5 RC4(40) MD5 

 454  Appendix A. Error! No text of specified style in document.

The following table contains abbreviations used in Table 9.

Table 10: SSL Cipher Abbreviations

Abbreviation Description

3DES Triple Data Encryption Standard. 3DES is a mode of the DES encryption

algorithm that encrypts data three times.

ADH Anonymous Diffie Hellman: The base Diffie-Hellman algorithm is used,

but with no authentication.

AES Advanced Encryption Standard.

CBC Cipher Block Chaining encryption mode.

DES Data Encryption Standard (DES) is a cipher (a method for encrypting

information).

DH Diffie-Hellman key exchange is a cryptographic protocol that enables two

parties that have no prior knowledge of each other to jointly establish a

shared secret key over an insecure communications channel. This key can

then be used to encrypt subsequent communications using a symmetric

key cipher.

DHE Ephemeral Diffie-Hellman key exchange that creates ephemeral (one-

time) secret keys. This is possibly the most secure of the three Diffie-

Hellman options because it results in a temporary, authenticated key.

DSS Digital Signature Standard. DSS is a United States Federal Government

standard for digital signatures.

ECDH Elliptic Curve Diffie-Hellman is a key agreement protocol that enables

two parties to establish a shared secret key over an insecure channel. This

key can then be used to encrypt subsequent communications using a

symmetric key cipher. ECDH is a variant of the Diffie-Hellman protocol

using elliptic curve cryptography.

ECDSA Elliptic Curve Digital Signature Algorithm.

Fortezza Fortezza is an information security system developed by the United States

Federal Government. Fortezza PC Card security tokens contain an NSA-

approved security microprocessor called Capstone (MYK-80) that

implements the Skipjack encryption algorithm.

GCM Galois/Counter Mode for symmetric key cryptographic block ciphers. It

combines the well-known counter mode of encryption with the new

Galois mode of authentication.

IDEA International Data Encryption Algorithm (IDEA). IDEA is a block cipher.

MD5 Message-Digest algorithm 5.

RC2 Block cipher with a variable size key.

JavaScript Reference Guide  455 

Abbreviation Description

RC4 Software stream cipher (also known as ARC4 or ARCFOUR).

RSA An algorithm for public-key encryption.

SHA1 Secure Hash Algorithm 1.

SRP Secure Remote Password, a cryptographically strong network

authentication mechanism

JavaScript Reference Guide  457 

Appendix B

Chapter 2. WebLOAD-supported XML DOM
Interfaces

WebLOAD supports the following XML DOM Document Interfaces:

 XML Document Interface

 Node Interface

 Node List Interface

 NamedNodeMap Interface

 ParseError Interface

 Implementation Interface

 XML Parser Interface

The tables in this appendix list the properties and methods of the interfaces supported

by WebLOAD.

XML Document Interface Properties

Table 11: XML Document Interface Properties

Property Description

doctype A read-only property that gets the node for the DTD

specified for the document. If no DTD was specified, null is

returned.

documentElement A read/write property that gets/sets the root node of the

document.

implementation A read-only property that returns the implementation

interface for this document.

parseError A read-only property that provides an object that

summarizes the last parsing error encountered.

 458  Appendix B. Error! No text of specified style in document.

Property Description

preserveWhitespace A read-write property that informs the parser whether the

default mode of processing is to preserve whitespace or not.

The default value of this property is false.

readyState A read-only property indicating the status of instantiating

the XML processor and document download. The value of

the readyState property is summarized in the table.

resolveExternals A read-write property that informs the parser that resolvable

namespaces (a namespaces URI that begin with an “x-

schema:” prefix), DTD external subsets, and external entity

references should be resolved at parse time.

url A read-only property that returns the canonicalized URL for

the XML document specified in the last call to load().

validateOnParse A read/write property that turns validation on at parse time

if the value of bool is true, off if validate is false.

XML Document Interface Methods

Table 12: XML Document Interface Methods

Method Description

abort() Aborts an asynchronous download in progress.

createAttribute(name) Creates a node of type ATTRIBUTE with the name

supplied.

CreateCDATASection

(data)

Creates a node of type CDATA_SECTION with

nodeValue set to data.

createComment(data) Creates a node of type COMMENT with

nodeValue set to data.

createDocumentFragment Creates a node of type DOCUMENT_FRAGMENT

in the context of the current document.

createElement(tagName) Creates a node of type ELEMENT with the

nodeName of tagName.

createEntityReference(name) Creates a node of type ENTITY_REFERENCE

where name is the name of the entity referenced.

CreateNode(type, name,

namespaceURI)

Creates a node of the type specified in the context

of the current document. Allows nodes to be

created as a specified namespace.

JavaScript Reference Guide  459 

Method Description

CreateProcessing

Instruction

(target, data)

Creates a node of type

PROCESSING_INSTRUCTION with the target

specified and nodeValue set to data.

createTextNode(data) Creates a node of type TEXT with nodeValue set to

data.

GetElementsByTagName

(tagname)

Returns a collection of all descendent Element

nodes with a given tagName.

load(url) Loads an XML document from the location

specified by the url. If the url cannot be resolved

or accessed or does not reference an XML

document, the documentElement is set to null and

an error is returned. Returns a Boolean.

loadXML(xmlstring) Loads an XML document using the supplied string.

xmlstring can be an entire XML document or a

well-formed fragment. If the XML within xmlstring

cannot be loaded, the documentElement is set to

null and an error is returned.

NodeFromID(idstring) Returns the node that has an ID attribute with the

value corresponding to idString.

Save() Serialize the XML. The parameter can be a

filename, an ASP response, an XML Document, or

any other COM object that supports Istream,

IpersistStream, or IpersistStreamInit.

Node Interface Properties

Table 13: Node Interface Properties

Property Description

attributes A read-only property that returns a

NamedNodeMap containing attributes for this node.

BaseName A read-only property that returns the right-hand

side of a namespace qualified name. For example,

yyy for the element <xxx:yyy>. BaseName must

always return a non-empty string.

childNode A read-only property that returns a NodeList

containing all children of the node.

DataType A read-write property that indicates the node type.

 460  Appendix B. Error! No text of specified style in document.

Property Description

Definition A read-only property whose value is the node that

contains the definition for this node.

FirstChild A read-only property that returns the first child

node. If the node has no children, firstChild

returns null.

LastChild A read-only property that returns the last child

node. If the node has no children, lastChild

returns null.

NextSibling A read-only property that returns the node

immediately following this node in the children of

this node’s parent. Returns null if no such node

exists.

NamespaceURI A read-only property that returns the URI for the

namespace (the uuu portion of the namespace

declaration xmlns:nnn=“uuu”). If there is no

namespace on the node that is defined within the

context of the document, ““ is returned.

NodeName A read-only property indicating the name of the

node.

NodeType A read-only property indicating the type of node.

NodeTypeString Returns the node type in string form.

NodeTypedValue A read/write property for the typed value of the

node.

NodeValue A read/write property for the value of the node.

OwnerDocument A property that indicates the document to which

the node belongs or when the node is removed

from a document.

parentNode A read-only property that provides a pointer to the

parent.

parsed A read-only property that indicates that this node

and all of its descendants have been parsed and

instantiated. This is used in conjunction with

asynchronous access to the document.

prefix A read-only property that returns the prefix

specified on the element, attribute of entity

reference. For example, xxx for the element

<xxx:yyy>. If there is no prefix specified, ““ is

returned.

JavaScript Reference Guide  461 

Property Description

previousSibling A read-only property that returns the node

immediately preceding this node in the children of

this node’s parent. Returns null if no such node

exists.

specified A read-only property indicating the node was

specified directly in the XML source and not

implied by the DTD schema.

text A string representing the content of the element

and all descendents. For example “content of

tag” in

<sometag size=34>

 content of tag

</sometag>.

xml A read-only property that returns the XML

representation of the node and all its descendants

as a string.

Node Interface Methods

Table 14: Node Interface Methods

Method Description

appendChild(newChild) A method to append newChild as the last child of

this node.

cloneNode(deep) A method to create a new node that is an exact

clone (same name, same attributes) as this node.

When deep is false, only the node and attributes

without its children are cloned. When deep is true,

the node and all its descendants are cloned.

hasChildNodes() A method that indicates whether the node has

children.

InsertBefore

(newChild, oldChild)

A method to insert newChild as a child of this

node. oldChild is returned. oldNode must be a

child node of the element, otherwise an error is

returned. If newChild is null, the oldChild is

removed.

removeChild(child) A method to remove a childNode from a node. If

childNode is not a child of the node, an error is

returned.

 462  Appendix B. Error! No text of specified style in document.

Method Description

ReplaceChild

(newChild, oldChild)

A method to replace oldChild with newChild as

a child of this node.

selectNodes(query) Returns a NodeList containing the results of the

query indicated by query, using the current node as

the query context. If no nodes match the query, an

empty NodeList is returned. If there is an error in

the query string, the DOM error reporting is used.

SelectSingleNode

(query)

Returns a single node that is the first node in the

NodeList returned from the query, using the

current node as the query context. If no nodes

match the query, null is returned. If there is an

error in the query string, an error is returned.

TransformNode

(stylesheetDOMNode)

Returns the results of processing the source

DOMNode and its children with the stylesheet

indicated by stylesheetDOMNode. The source

defines the entire context on which the stylesheet

operates, so ancestor or id navigation outside of the

scope is not allowed. The stylesheet parameter

must be either a DOM Document node, in which

case the document is assumed to be an ASL

stylesheet, or a DOM Node in the xsl namespace, in

which case this node is treated as a standalone.

TransformNodeToObject

(stylesheet, Object)

Sends the results of the transform to the requested

object, either in IStream or a DOM Document.

Node List Interface

Table 15: Node List Interface

Property Description

length The number of nodes in the NodeList. The length

of the list will change dynamically as children or

attributes are added/deleted from the element.

nextNode Returns the next node in the NodeList based on

the current node.

Method Description

item(index) Returns the node in the NodeList with the

specified index.

JavaScript Reference Guide  463 

Method Description

reset() Returns the iterator to the uninstantiated state; that

is, before the first node in the NodeList.

NamedNodeMap Interface

Table 16: NamedNodeMap Interface

Property Description

length The number of nodes in the NamedNodeMap. The

length of the list will change dynamically as

children or attributes are added/deleted from the

element.

Method Description

getNamedItem(name) Returns the node corresponding to the attribute

with name. If name is not an attribute, null is

returned.

GetQualifiedItem

(baseName, namespaceURI)

Allows the specification of a qualifying

namespaceURI to access a namespace qualified

attribute. It returns the node corresponding to the

attribute with baseName in the namespace

specified by nameSpaceURI. If the qualified name

(baseName+nameSpaceURI) is not an attribute,

null is returned.

item(index) Returns the node in the NameNodeMap with the

specified index. If the index is greater than the total

number of nodes, null is returned. If the index is

less than zero, null is returned.

nextnode() Returns the next node in the NodeList based on

the current node.

RemovedNamedItem

(name)

Removes the attribute node corresponding to name

and returns the node. If name is not an attribute,

null is returned.

RemoveQualifiedItem

(basename, namespaceURI)

Removes the nameSpaceURI qualified attribute

node corresponding to baseName and returns the

node. If the qualified name is not an attribute, null

is returned.

reset() Returns the iterator to the uninstantiated state; that

is before the first node in the NodeList.

 464  Appendix B. Error! No text of specified style in document.

Method Description

SetNamedItem

(namedItem)

Adds the attribute Node to the list. If an attribute

already exists with the same name as that specified

by nodeName of DOMNode, the attribute is replaced

and the node is returned. Otherwise, Node is

returned.

ParseError Interface

Table 17: ParseError Interface

Item Description

errorcode Returns the error code number in decimal.

filepos Returns the absolute file position where the error

occurred.

line Returns number of the line containing the error.

linepos Returns the character position where the error

occurred.

reason Returns the reason for the error.

srcText Returns the full text of the line containing the error.

url Returns the URL of the XML file containing the

error.

Implementation Interface

Table 18: Implementation Interface

Item Description

HasFeature

(feature, version)

The method returns true if the specified version of

the parser supports the specified feature. In Level 1,

“1.0” is the only valid version value.

JavaScript Reference Guide  465 

Appendix C

Chapter 3. HTTP Protocol Status Messages

This appendix documents the HTTP protocol status messages that you may see over

the course of a typical test session. The status-code definitions provided in this

appendix include a list of method(s) that the status code may follow and any meta

information required in the response. The material included here is part of the HTTP

protocol standard provided by the IETF.

The HTTP protocol status messages fall into the following categories:

 Informational (1XX)

 Success (2XX)

 Redirection (3XX)

 Client Error (4XX)

 Server Error (5XX)

Informational 1XX

The 1XX class of status code indicates a provisional response, consisting only of the

Status-Line and optional headers, and is terminated by an empty line. There are no

required headers for this class of status code. Since HTTP/1.0 did not define any 1XX

status codes, servers must not send a 1XX response to an HTTP/1.0 client except under

experimental conditions.

A client must be prepared to accept one or more 1XX status responses prior to a

regular response, even if the client does not expect a 100 (Continue) status message.

Unexpected 1XX status responses may be ignored by a user agent.

Proxies must forward 1XX responses, unless the connection between the proxy and its

client has been closed, or unless the proxy itself requested the generation of the 1XX

response. (For example, if a proxy adds an “Expect: 100-continue” field when it

forwards a request, then it need not forward the corresponding 100 (Continue)

response(s).)

 466  Appendix C. Error! No text of specified style in document.

Table 19: Informational 1XX Message Set

Message Description

100

Continue

The client should continue with request. This interim response is

used to inform the client that the initial part of the request has been

received and has not yet been rejected by the server. The client

should continue by sending the remainder of the request or, if the

request has already been completed, ignore this response. The server

must send a final response after the request has been completed.

101

Switching Protocols

The client has requested, via the Upgrade message header field, a

change in the application protocol being used on this connection. This

response indicates that the server understands and is willing to

comply with the client’s request. The server will switch protocols to

those defined by the response’s Upgrade header field immediately

after the empty line which terminates this 101 response.

The protocol should be switched only when it is advantageous to do

so. For example, switching to a newer version of HTTP is

advantageous over older versions, and switching to a real-time,

synchronous protocol might be advantageous when delivering

resources that use such features.

Success 2XX

The 2XX class of status code indicates that the client’s request was successfully

received, understood, and accepted.

Table 20: Successful 2XX Message Set

Message Description

200

OK

The request has succeeded. The information returned with a 200

response is dependent on the method used in the request. For

example:

GET-an entity corresponding to the requested resource is sent in the

response

HEAD-the entity-header fields corresponding to the requested

resource are sent in the response without any message-body

POST-an entity describing or containing the result of the action

TRACE-an entity containing the request message as received by the

end server

JavaScript Reference Guide  467 

Message Description

201

_Created

The request has been fulfilled and resulted in a new resource being

created. The newly created resource can be referenced by the URI(s)

returned in the entity of the response, with the most specific URI for

the resource identified by the Location header field.

A 201 response should include an entity containing a list of resource

characteristics and location(s) from which the user or user agent can

choose the one most appropriate. The entity format is specified by the

media type identified in the Content-Type header field. The origin

server must create the resource before returning a 201 status code. If

the action cannot be carried out immediately, the server should

respond with 202 (Accepted) response instead.

A 201 response may contain an ETag response header field

indicating the current value of the entity tag for the requested variant

just created.

202

Accepted

The request has been accepted for processing, but the processing has

not been completed. The request may or may not eventually be acted

upon, depending on whether or not it is authorized or disallowed

when processing actually takes place. There is no facility for re-

sending a status code from an asynchronous operation such as this.

The 202 response is intentionally non-committal. Its purpose is to

allow a server to accept a request for some other process (perhaps a

batch-oriented process that is only run once per day) without

requiring that the user agent’s connection to the server persist until

the process is completed. The entity returned with this response

should include an indication of the request’s current status and either

a pointer to a status monitor or some estimate of when the user can

expect the request to be fulfilled.

203

Non-Authoritative

Information

The metainformation being returned in the entity-header is not the

definitive set that is usually obtained from the origin server. This

information has been gathered from a local or a third-party copy. The

set presented may be a subset or superset of the original version. For

example, including local annotation information about the resource

might result in a superset of the metainformation known by the

origin server. Use of this response code is not required and is only

appropriate when the response would otherwise be a generic

(perhaps non-informative) 200 (OK).

 468  Appendix C. Error! No text of specified style in document.

Message Description

204

No Content

The server has fulfilled the request, does not need to return an entity-

body, and might want to return updated metainformation. The

response may include new or updated metainformation in the form

of entity-headers, which if present should be associated with the

requested variant.

If the client is a user agent, it should not change its document view from

that which caused the request to be sent. This response is primarily

intended to allow input for actions to take place without causing a

change to the user agent’s active document view, although any new

or updated metainformation should be applied to the document

currently in the user agent’s active view.

The 204 response must not include a message-body, and thus is

always terminated by the first empty line after the header fields.

205

Reset Content

The server has fulfilled the request and the user agent should reset the

document view which caused the request to be sent. This response is

primarily intended to allow input for actions to take place via user

input, followed by a clearing of the form in which the input is entered

so that the user can easily initiate another input action. The response

must not include an entity.

JavaScript Reference Guide  469 

Message Description

206

Partial Content

The server has fulfilled the partial GET request for the resource. The

request must have included a Range header field indicating the

desired range. The request may have also included an If-

Range header field to make the request conditional.

The response must include one of the following header fields:

 Content-Range header field indicating the range included with

this response.

 A multipart/byteranges Content-Type field including

Content-Range fields for each part.

If a Content-Length header field is present in the response, its

value must match the actual number of OCTETs transmitted in the

message-body.

 Date

 ETag and/or Content-Location, if the header would have

been sent in a 200 response to the same request

 Expires, Cache-Control, and/or Vary, if the field-value

might differ from that sent in any previous response for the same

variant.

If the 206 response is the result of an If-Range request that used a

strong cache validator, the response should not include other entity-

headers. If the response is the result of an If-Range request that

used a weak validator, the response must not include other entity-

headers; this prevents inconsistencies between cached entity-bodies

and updated headers. Otherwise, the response must include all of the

entity-headers that would have been returned with a 200 (OK)

response to the same request.

A cache must not combine a 206 response with other previously

cached content if the ETag or Last-Modified headers do not match

exactly.

A cache that does not support Range and Content-Range headers

must not cache 206 (Partial) responses.

Redirection 3XX

The 3XX class of status code indicates that further action needs to be taken by the user

agent in order to fulfill the request. The action required may be carried out by the user

agent without interaction with the user if and only if the method used in the second

request is GET or HEAD. A client should detect infinite redirection loops, since such

loops generate network traffic for each redirection.

 470  Appendix C. Error! No text of specified style in document.

Note: Previous versions of this specification recommended a maximum of five

redirections. Content developers should be aware that there might be clients that

implement such a fixed limitation.

Table 21: Redirectional 3XX Message Set

Message Description

300

Multiple Choices

The requested resource corresponds to any one of a set of

representations, each with its own specific location. Agent-driven

negotiation information is being provided so that the user (or user

agent) can select a preferred representation and redirect its request to

that location.

Unless it was a HEAD request, the response should include an entity

containing a list of resource characteristics and location(s) from which

the user or user agent can choose the one most appropriate. The

entity format is specified by the media type identified in the

Content-Type header field. Depending upon the format and the

capabilities of the user agent, the most appropriate choice may be

selected automatically. However, this specification does not define

any standard for such automatic selection.

If the server has a preferred choice of representation, it should

include the specific URI for that representation in the

Location field. User agents may use the Location field value for

automatic redirection. This response is cacheable unless otherwise

indicated.

301

Moved Permanently

The requested resource has been assigned a new permanent URI and

any future references to this resource should use one of the returned

URIs. Clients with link editing capabilities ought to automatically re-

link references to the Request-URI to one or more of the new

references returned by the server, where possible. This response is

cacheable unless otherwise indicated.

The new permanent URI should be identified by the Location field

in the response. Unless the request method was HEAD, the entity of

the response should contain a short hypertext note with a hyperlink

to the new URI(s).

If the 301 status code is received in response to a request other than

GET or HEAD, the user agent must not automatically redirect the

request unless it can be confirmed by the user, since this might

change the conditions under which the request was issued.

Note: When automatically redirecting a POST request after

receiving a 301 status code, some existing HTTP/1.0 user agents

will erroneously change it into a GET request.

JavaScript Reference Guide  471 

Message Description

302

Found

The requested resource temporarily resides under a different URI.

Since the redirection might be altered on occasion, the client should

continue to use the Request-URI for future requests. This response

is only cacheable if indicated by a Cache-Control or

Expires header field.

The temporary URI should be identified by the Location field in the

response. Unless the request method was HEAD, the entity of the

response should contain a short hypertext note with a hyperlink to

the new URI(s).

If the 302 status code is received in response to a request other than

GET or HEAD, the user agent must not automatically redirect the

request unless it can be confirmed by the user, since this might

change the conditions under which the request was issued.

Note: RFC 1945 and RFC 2068 specify that the client is not

allowed to change the method on the redirected request.

However, most existing user agent implementations treat 302 as

if it were a 303 response, performing a GET on the

Location field-value regardless of the original request method.

The status codes 303 and 307 have been added for servers that

wish to make unambiguously clear which kind of reaction is

expected of the client.

303

See Other

The response to the request can be found under a different URI and

should be retrieved using a GET method on that resource. This

method exists primarily to allow the output of a POST-activated

script to redirect the user agent to a selected resource. The new URI is

not a substitute reference for the originally requested resource. The

303 response must not be cached, but the response to the second

(redirected) request might be cacheable.

The different URI should be identified by the Location field in the

response. Unless the request method was HEAD, the entity of the

response should contain a short hypertext note with a hyperlink to

the new URI(s).

Note: Many pre-HTTP/1.1 user agents do not understand the

303 status. When interoperability with such clients is a concern,

the 302 status code may be used instead, since most user agents

react to a 302 response as described here for 303.

 472  Appendix C. Error! No text of specified style in document.

Message Description

304

Not Modified

If the client has performed a conditional GET request and access is

allowed, but the document has not been modified, the server should

respond with this status code. The 304 response must not contain a

message-body, and thus is always terminated by the first empty line

after the header fields.

The response must include the following header fields:

 Date, unless its omission is required. f a clockless origin server

obeys these rules, and proxies and clients add their own Date to

any response received without one, (as already specified by [RFC

2068]), caches will operate correctly.

 ETag and/or Content-Location, if the header would have

been sent in a 200 response to the same request.

 Expires, Cache-Control, and/or Vary, if the field-value

might differ from that sent in any previous response for the same

variant.

If the conditional GET used a strong cache validator, the response

should not include other entity-headers. If the conditional GET used a

weak validator, the response must not include other entity-headers.

This prevents inconsistencies between cached entity-bodies and

updated headers.

If a 304 response indicates an entity not currently cached, then the

cache must disregard the response and repeat the request without the

conditional.

If a cache uses a received 304 response to update a cache entry, the

cache must update the entry to reflect any new field values given in

the response.

305

Use Proxy

The requested resource must be accessed through the proxy

identified by the Location field. The Location field gives the URI

of the proxy. The recipient is expected to repeat this single request via

the proxy. 305 responses must only be generated by origin servers.

Note: RFC 2068 did not clearly state that 305 was intended to

redirect a single request, and to be generated by origin servers

only. Nevertheless, not observing these limitations has

significant security consequences.

306

(Unused)

The 306 status code was used in a previous version of the

specification. This code is currently not in use. However, the code is

reserved for future application.

JavaScript Reference Guide  473 

Message Description

307

Temporary Redirect

The requested resource resides temporarily under a different URI.

Since the redirection may be altered on occasion, the client should

continue to use the Request-URI for future requests. This response

is only cacheable if indicated by a Cache-Control or

Expires header field.

The temporary URI should be identified by the Location field in the

response. Unless the request method was HEAD, the entity of the

response should contain a short hypertext note with a hyperlink to

the new URI(s), since many pre-HTTP/1.1 user agents do not

understand the 307 status. Therefore, the note should contain the

information necessary for a user to repeat the original request on the

new URI.

If the 307 status code is received in response to a request other than

GET or HEAD, the user agent must not automatically redirect the

request unless it can be confirmed by the user, since this might

change the conditions under which the request was issued.

Client Error 4XX

The 4XX class of status code is intended for cases in which the client seems to have

erred. Except when responding to a HEAD request, the server should include an entity

containing an explanation of the error situation, and whether it is a temporary or

permanent condition. These status codes are applicable to any request method. User

agents should display any included entity to the user.

If the client is sending data, a server implementation using TCP should be careful to

ensure that the client acknowledges receipt of the packet(s) containing the response,

before the server closes the input connection. If the client continues sending data to the

server after the close, the server’s TCP stack will send a reset packet to the client, which

may erase the client’s unacknowledged input buffers before they can be read and

interpreted by the HTTP application.

Table 22: Client Error 4XX message set

Message Description

400

Bad Request

The request could not be understood by the server due to malformed

syntax. The client should not repeat the request without

modifications.

 474  Appendix C. Error! No text of specified style in document.

Message Description

401

Unauthorized

The request requires user authentication. The response must include

a WWW-Authenticate header field containing a challenge

applicable to the requested resource. The client may repeat the

request with a suitable Authorization header field. If the request

already included Authorization credentials, then the 401 response

indicates that authorization has been refused for those credentials. If

the 401 response contains the same challenge as the prior response,

and the user agent has already attempted authentication at least once,

then the user should be presented the entity that was identified in the

response, since that entity might include relevant diagnostic

information.

402

Payment Required

This code is reserved for future use.

403

Forbidden

The server understood the request, but is refusing to fulfill it.

Authorization will not help and the request should not be repeated. If

the request method was not HEAD and the server wishes to make

public why the request has not been fulfilled, it should describe the

reason for the refusal in the entity. If the server does not wish to

make this information available to the client, the status code

404 (Not Found) can be used instead.

404

Not Found

The server has not found anything matching the Request-URI. No

indication is given of whether the condition is temporary or

permanent. The 410 (Gone) status code should be used if the server

knows, through some internally configurable mechanism, that an old

resource is permanently unavailable and has no forwarding address.

This status code is essentially a generic, neutral response, commonly

used when the server does not wish to reveal exactly why the request

has been refused, or when no other response is applicable.

405

Method Not Allowed

The method specified in the Request-Line is not allowed for the

resource identified by the Request-URI. The response must include

an Allow header containing a list of valid methods for the requested

resource.

JavaScript Reference Guide  475 

Message Description

406

Not Acceptable

The resource identified by the request is only capable of generating

response entities which have content characteristics not acceptable

according to the accept headers sent in the request.

Unless it was a HEAD request, the response should include an entity

containing a list of available entity characteristics and location(s)

from which the user or user agent can choose the one most

appropriate. The entity format is specified by the media type

identified in the Content-Type header field. Depending upon the

format and the capabilities of the user agent, selection of the most

appropriate choice may be performed automatically. However, this

specification does not define any standard for such automatic

selection.

Note: HTTP/1.1 servers are allowed to return responses which

are not acceptable according to the Accept Headers sent in the

request. In some cases, this may even be preferable to sending a

406 response. User agents are encouraged to inspect the

headers of an incoming response to determine if it is acceptable.

If the response could be unacceptable, a user agent should

temporarily stop receipt of more data and query the user for a

decision on further actions.

407

Proxy Authentication

Required

This code is similar to 401 (Unauthorized), but indicates that the

client must first authenticate itself with the proxy. The proxy must

return a Proxy-Authenticate header field containing a challenge

applicable to the proxy for the requested resource. The client may

repeat the request with a suitable Proxy-Authorization header

field.

408

Request Timeout

The client did not produce a request within the time that the server

was prepared to wait. The client may repeat the request without

modifications at any later time.

409

Conflict

The request could not be completed due to a conflict with the current

state of the resource. This code is only allowed in situations where it

is expected that the user might be able to resolve the conflict and

resubmit the request. The response body should include enough

information for the user to recognize the source of the conflict.

Ideally, the response entity would include enough information for

the user or user agent to fix the problem; however, that might not be

possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For

example, if versioning were being used and the entity being PUT

included changes to a resource which conflict with those made by an

earlier (third-party) request, the server might use the 409 response to

indicate that it can’t complete the request. In this case, the response

entity would likely contain a list of the differences between the two

versions in a format defined by the response Content-Type.

 476  Appendix C. Error! No text of specified style in document.

Message Description

410

Gone

The requested resource is no longer available at the server and no

forwarding address is known. This condition should be considered

permanent. Clients with link editing capabilities should delete

references to the Request-URI after user approval. If the server does

not know, or has no facility to determine, whether or not the

condition is permanent, the status code 404 (Not Found) should be

used instead. This response is cacheable unless indicated otherwise.

The 410 response is primarily intended to assist the task of web

maintenance by notifying the recipient that the resource is

intentionally unavailable and that the server owners desire that

remote links to that resource be removed. Such an event is common

for limited-time, promotional services and for resources belonging to

individuals no longer working at the server’s site. It is not necessary

to mark all permanently unavailable resources as “gone” or to keep

the mark for any length of time-that is left to the discretion of the

server owner.

411

Length Required

The server refuses to accept the request without a defined

Content-Length. The client may repeat the request if it adds a

valid Content-Length header field containing the length of the

message-body in the request message.

412

Precondition Failed

The precondition given in one or more of the request-header fields

evaluated to false when it was tested on the server. This response

code allows the client to place preconditions on the current resource

metainformation (header field data) and thus prevent the requested

method from being applied to a resource other than the one intended.

413

Request Entity Too

Large

The server is refusing to process a request because the request entity

is larger than the server is willing or able to process. The server may

close the connection to prevent the client from continuing the request.

If the condition is temporary, the server should include a Retry-

After header field to indicate that it is temporary and after what

time period has elapsed may the client try again.

414

Request-URI Too

Long

The server is refusing to service the request because the Request-

URI is longer than the server is willing to interpret. This rare

condition is only likely to occur when a client has improperly

converted a POST request to a GET request with long query

information, when the client has descended into a URI “black hole”

of redirection (for example, a redirected URI prefix that points to a

suffix of itself), or when the server is under attack by a client

attempting to exploit security holes present in some servers using

fixed-length buffers for reading or manipulating the Request-URI.

415

Unsupported Media

Type

The server is refusing to service the request because the entity of the

request is in a format not supported by the requested resource for the

requested method.

JavaScript Reference Guide  477 

Message Description

416

Requested Range Not

Satisfiable

A server should return a response with this status code if:

 A request included a Range request-header field.

 None of the range-specifier values in this field overlap the current

extent of the selected resource.

 The request did not include an If-Range request-header field.

For byte-ranges, this means that the first-byte-pos of all of the

byte-range-spec values were greater than the current length of

the selected resource.

When this status code is returned for a byte-range request, the

response should include a Content-Range entity-header field

specifying the current length of the selected resource. This response

must not use the multipart/byteranges content-type.

417

Expectation Failed

The expectation identified in an Expect request-header field could

not be met by this server, or, if the server is a proxy, the server has

unambiguous evidence that the request could not be met by the next-

hop server.

Server Error 5XX

The 5XX class of status code is intended for cases in which the server is aware that it

has erred or is incapable of performing the request. Except when responding to a

HEAD request, the server should include an entity containing an explanation of the

error situation, and whether it is a temporary or permanent condition. User agents

should display any included entity to the user. These response codes are applicable to

any request method.

Table 23: Severe Error 5XX Message Set

Message Description

500

Internal Server Error

The server encountered an unexpected condition which prevented it

from fulfilling the request.

501

Not Implemented

The server does not support the functionality required to fulfill the

request. This is the appropriate response when the server does not

recognize the request method and is not capable of supporting it for

any resource.

502

Bad Gateway

The server, while acting as a gateway or proxy, received an invalid

response from the upstream server it accessed in attempting to fulfill

the request.

 478  Appendix C. Error! No text of specified style in document.

Message Description

503

Service Unavailable

The server is currently unable to handle the request due to a

temporary overloading or maintenance of the server. The implication

is that this is a temporary condition which will be alleviated after

some delay. If known, the length of the delay may be indicated in a

Retry-After header. If no Retry-After is given, the client should

handle the response as it would for a 500 response.

Note: The existence of the 503 status code does not imply that a

server must use it when becoming overloaded. Some servers

may wish to simply refuse the connection.

504

Gateway Timeout

The server, while acting as a gateway or proxy, did not receive a

timely response from the upstream server specified by the URI (e.g.

HTTP, FTP, LDAP) or some other auxiliary server (e.g. DNS) it

needed to access in attempting to complete the request.

Note: Implementers should note that some deployed proxies are

known to return 400 or 500 when DNS lookups time out.

505

HTTP Version Not

Supported

The server does not support, or refuses to support, the HTTP protocol

version that was used in the request message. The server is indicating

that it is unable or unwilling to complete the request using the same

major version as the client. The response should contain an entity

describing why that version is not supported and what other

protocols are supported by that server.

JavaScript Reference Guide  479 

Appendix D

Chapter 4. WebLOAD–supported Character Sets

WebLOAD supports the following character sets for use with character encoding

functions.

Table 24. Supported Character Sets

Character Set Value

Default 0

Arabic (864) 864

Arabic (ASMO 708) 708

Arabic (DOS) 720

Arabic (ISO 8859-6) 28596

Arabic (Mac) 10004

Arabic (Windows) 1256

Baltic (ISO 8859-4) 28594

Baltic (Windows) 1257

Baltic / Estonian (ISO 8859-13) 28603

Celtic (ISO 8859-14) 28604

Central European (DOS) 852

Central European (ISO 8859-2) 28592

Central European (Mac) 10029

Central European (Windows) 1250

Chinese Simplified (GB18030) 54936

Chinese Simplified (GB2312) 936

Chinese Simplified (GB2312-80) 20936

Chinese Simplified (HZ) 52936

Chinese Simplified (ISO 2022) 50227

Chinese Simplified (Mac) 10008

Chinese Traditional (Big5) 950

 480  Appendix D. Error! No text of specified style in document.

Character Set Value

Chinese Traditional (EUC) 51950

Croatian (Mac) 10082

Cyrillic (DOS) 866

Cyrillic (ISO 8859-5) 28595

Cyrillic (KOI8-R) 20866

Cyrillic (KOI8-U) 21866

Cyrillic (Mac) 10007

Cyrillic (primarily Russian) 855

Cyrillic (Windows) 1251

Greek (ISO 8859-7) 28597

Greek (Mac) 10006

Greek (Windows) 1253

Hebrew (DOS) 862

Hebrew (ISO-Logical) 38598

Hebrew (ISO-Visual) 28598

Hebrew (Mac) 10005

Hebrew (Windows) 1255

Icelandic (Mac) 10079

Japanese (EUC) 51932

Japanese (JIS) 50220

Japanese (Shift-JIS) 932

Korean (EUC) 51949

Korean (ISO 2022) 50225

Korean (Johab) 1361

Korean (Unified Hangul Code) 949

Nordic (ISO 8859-10) 28600

Romanian (ISO 8859-16) 28606

Romanian (Mac) 10010

South European (ISO 8859-3) 28593

Tahi (ISO 8859-11) 28601

Thai (Windows) 874

Turkish (DOS) 857

JavaScript Reference Guide  481 

Character Set Value

Turkish (ISO 8859-9) 28599

Turkish (Mac) 10081

Turkish (Windows) 1254

Ukrainian (Mac) 10017

Unicode (UTF-7) 65000

Unicode (UTF-8) 65001

Unicode UTF-16, big endian 1201

Unicode UTF-16, little endian 1200

Unicode UTF-32, big endian 12001

Unicode UTF-32, little endian 12000

Vietnamese (Windows) 1258

Western (ISO-8859-15) 28605

Western European (DOS) 850

Western European (ISO 8859-1) 28591

Western European (Mac) 10000

Western European (Windows) 1252

JavaScript Reference Guide  483 

Appendix E

Glossary

Glossary Terms

Glossary Term Description

AAT An older, obsolete WebLOAD utility that was used for

recording web session activities as a JavaScript file. It is

replaced by WebLOAD Recorder.

Aborted Rounds The number of times the Virtual Clients started to run a

script but did not complete the script, during the last

reporting interval. This might be due to a session being

stopped either automatically or manually by the user.

script Specification of the sequence of HTTP protocol calls sent

by Virtual Clients to the SUT (System Under Test).

Scripts are written in JavaScript. You can either write

scripts as a text file or generate them automatically using

the WebLOAD Recorder.

Application Being Tested (ABT) See SUT.

Attempted Connections The total number of times the Virtual Clients attempted

to connect to the SUT during the last reporting interval.

Automatic Transaction counters If you have Automatic Transactions enabled, WebLOAD

creates three counters for each GET and POST statement

in the script:

 The total number of times it occurred

 The number of times it succeeded

 The number of times it failed during the last

reporting interval.

Average For timers, average is the total amount of time counted

by the timer (not the elapsed time) divided by the Count

(that is, the total number of readings). For example, the

average for Transaction Time is the amount of time it

took to complete all the successful transactions, divided

by the number of successful transactions (the Count).

 484  Appendix E. Error! No text of specified style in document.

Glossary Term Description

Built-in Timer A timer measures the time required to perform a given

task. WebLOAD supports both programmed timers and

built-in timers. ROUND TIME is a built-in timer. The

ROUND TIME is the time needed for one complete

execution of a script.

Connect Time The time it takes for a Virtual Client to connect to the

System Under Test (the SUT), in seconds. In other words,

the time it takes from the beginning of the HTTP request

to the TCP/IP connection.

The value posted in the Current Value column is the

average time it took a Virtual Client to connect to the

SUT during the last reporting interval.

If the Persistent Connection option is enabled, there may

not be a value for Connect Time because the HTTP

connection remains open between successive HTTP

requests.

Connection Speed (Bits Per

Second)

The number of bits transmitted back and forth between

the Virtual Clients and the System Under Test (SUT),

divided by the time it took to transmit those bits, in

seconds.

You can set the Virtual Clients to emulate a particular

connection speed during the test, either by using the

Variable Connection Speed settings, or by coding the

connection speed in the script.

If a connection speed is specified for the test, WebLOAD

reports it in the Statistics Report.

The value posted in the Current Value column is the

number (sum) of bits passed per second during the last

reporting interval. It should match, very closely, the

connection speed you specified for the test.

JavaScript Reference Guide  485 

Glossary Term Description

Console The WebLOAD component that manages the test session.

The Console performs the following:

 Configures Load Session hosts and scripts

 Schedules Load Session scripts

 Configures Goal–Oriented test sessions

 Monitors the application's performance under the

generated load

 Manages the Load Session as it is running, allowing

you to pause, stop, and continue Load Session

components as needed

 Displays the current performance of the SUT

 Provides a final performance reports for Probing

Clients and Virtual Clients

 Manages exporting of performance reports

Count (For timers only.) The total number of readings (the

number of times the item being timed has occurred) for

the timed statistic since the beginning of the test. For

example, for Transaction Time, Count shows the number

of transactions that have been completed.

Current Slice The value posted for this reporting interval in the

Statistics Report main window.

Current Slice Average For per time unit statistics and counters, average is the

total of all of the current values for the last reporting

interval, divided by the number of readings.

For timers, average is the total amount of time counted

by the timer (not the elapsed time), divided by the Count

(that is, the total number of readings for the last

reporting interval). For example, the average for

Transaction Time is the amount of time it took to

complete all the successful transactions in the last

reporting interval, divided by the number of successful

transactions (the Current Slice Count).

Current Slice Count (For timers only.) The total number of readings (the

number of times the item being timed has occurred) for

the timed statistic for the last reporting interval. For

example, for Transaction Time, Current Slice Count

shows the number of transactions that have been

completed over the last reporting interval.

Current Slice Max The highest value reported for this statistic over the last

reporting interval.

Current Slice Min The lowest value reported for this statistic over the last

reporting interval.

 486  Appendix E. Error! No text of specified style in document.

Glossary Term Description

Current Slice Standard

Deviation

The average amount the measurement for this statistic

varies from the average over the last reporting interval.

Current Slice Sum The aggregate or total value for this statistic in this script

over the last reporting interval.

DNS Lookup Time The time it takes to resolve the host name and convert it

to an IP address by calling the DNS server.

Failed Connections The total number of times the Virtual Clients tried to

connect to the SUT but were unsuccessful, during the last

reporting interval.

This number is always less than or equal to the number

of failed hits because hits can fail for reasons other than a

failed connection.

Failed Hits The total number of times the Virtual Clients made an

HTTP request but did not receive the correct HTTP

response from the SUT during the last reporting interval.

Note that each request for each gif, jpeg, html file,

etc., is a single hit.

Failed Hits Per Second The number of times the Virtual Clients did not obtain

the correct HTTP response, divided by the elapsed time,

in seconds.

The value posted in the Current Value column is the

number (sum) of unsuccessful HTTP requests per second

during the last reporting interval.

Failed Pages Per Second The number of times the Virtual Clients did not obtain

the correct response to an upper level request, divided by

the elapsed time, in seconds.

The value posted in the Current Value column is the

number (sum) of unsuccessful requests per second

during the last reporting interval.

Failed Rounds The total number of times the Virtual Clients started but

did not complete the script during the last reporting

interval.

Failed Rounds Per Second The number of times the Virtual Clients started but did

not complete an iteration of the script, divided by the

elapsed time, in seconds. The value posted in the Current

Value column is the number (sum) of failed iterations of

the script per second during the last reporting interval.

First Byte The time it takes a Virtual Client to receive the first byte

of data.

Gallery See Templates Gallery.

JavaScript Reference Guide  487 

Glossary Term Description

Goal–Oriented Test A WebLOAD component enabling you to define the

performance goals required, and view the status of your

application when it is operating under this performance

goal. WebLOAD provides a Goal–Oriented Test Wizard

for configuring these performance goals. WebLOAD

automatically accelerates the number of Virtual Clients

accessing your website until you meet your performance

goal.

Note: The Goal-Oriented Test Wizard was

previously called the Cruise Control

Wizard.

Goal–Oriented Test Wizard See Goal–Oriented Test.

Hit Time The time it takes to complete a successful HTTP request,

in seconds. Each request for each gif, jpeg, html file,

etc., is a single hit. The time of a hit is the sum of the

Connect Time, Send Time, Response Time, and Process

Time.

The value posted in the Current Value column is the

average time it took to make an HTTP request and

process its response during the last reporting interval.

Hits The total number of times the Virtual Clients made HTTP

requests to the System Under Test (SUT) during the last

reporting interval.

For example, a Get statement for a URL retrieves a page.

The page can include any number of graphics and

contents files. Each request for each gif, jpeg, html file,

etc., is a single hit.

Hits Per Second The number of times the Virtual Clients made an HTTP

request, divided by the elapsed time, in seconds. Each

request for each gif, jpeg, html file, etc. is a single hit.

The value posted in the Current Value column is the

number (sum) of HTTP requests per second during the

last reporting interval.

Host A computer connected via a network, participating in a

test session. Each Host in a test session has assigned

tasks. A host can act as either a Load Machine or a

Probing Client Machine. All hosts participating in a test

session must be accessible to the Console over a network.

Therefore they must run TestTalk, the network agent.

 488  Appendix E. Error! No text of specified style in document.

Glossary Term Description

HTTP Response Status WebLOAD creates a row in the Statistics Report for each

kind of HTTP status code it receives as an HTTP

response from the SUT (redirection codes, success codes,

server error codes, or client error codes).

The value posted is the number of times the Virtual

Clients received that status code during the last reporting

interval.

Integrated Report A single configurable report that can integrate both

standard performance data, and data from the NT

Performance Monitor. This report gives you a more

complete picture of the performance of your application.

The data to be monitored and the data to be displayed in

the report are both configurable in the Console.

Internet Productivity Pack (IPP) Provides a set of protocol implementations enabling you

to load-test your application using these protocols.

Java and ActiveX counters You can add function calls to your scripts that enable you

to instantiate and call methods and properties in Java

and ActiveX components (see the WebLOAD Scripting

Guide). If there are ActiveX or Java function calls in the

script that you are running, WebLOAD reports three

counters for them in the Statistics Report:

 The total number of times it occurred

 The number of times it succeeded

 The number of times it failed during the last

reporting interval.

The row heading in the Statistics Report is the name of

the function call.

Java and ActiveX timers You can add function calls to your scripts that enable you

to instantiate and call methods and properties in Java

and ActiveX components (see the WebLOAD Scripting

Guide). If there are ActiveX or Java function calls in the

script you are running, WebLOAD reports timers for

them in the Statistics Report.

The timer value is the average amount of time it took to

complete the function call, in seconds, during the last

reporting interval.

The row heading in the Statistics Report is the name of

the function call.

JavaScript Reference Guide  489 

Glossary Term Description

Load Generator The component of the Load Machine that generates

Virtual Clients. Load Generators have the task of

bombarding the System Under Test with HTTP protocol

call requests as defined in the script. WebLOAD assesses

the application's performance by measuring the response

time experienced by the Virtual Clients. The number of

Virtual Clients at any given moment is determined by

the user.

Load Generator Machine See Load Machine.

Load Machine A host that runs Load Generators. Load Generators

bombard the application under test with a large load, to

enable complete scalability and integrity testing.

Load Session A Load Session includes both the complete Load

Template and the results obtained while running that

Load Session. A Load Template consists of information

about the hosts and scripts participating in the current

Load Session. The Load Template will also include

scheduling information. The complete Load Template is

illustrated in the Session Tree. Storing a Load Template

saves you time when repeatedly running WebLOAD

with the same, or even a similar network configuration,

since you don't have to recreate your Load Template

from scratch each time you want to start working.

Storing Load Session results can be useful when you

want to examine results from multiple test sessions or for

analyzing test session results.

Load Size The number of Virtual Clients running during the last

reporting interval.

Load Template A Load Template contains the complete Load Session

definition, without the test results. A Load Template

includes information about the participating hosts and

the scripts used in the current Load Session. The

definition also includes scheduling information and the

configuration of the Server Monitor and Integrated

Reports. The complete Load Template is illustrated in the

Session Tree. Storing a Load Template saves you time

when repeatedly running WebLOAD with the same, or

even a similar network configuration, since you do not

have to recreate your Load Template from scratch each

time you rerun a test.

 490  Appendix E. Error! No text of specified style in document.

Glossary Term Description

Page Time The time it takes to complete a successful upper level

request, in seconds. The Page Time is the sum of the

Connection Time, Send Time, Response Time, and

Process Time for all the hits on a page.

The value posted in the Current Value column is the

average time it took the Virtual Clients to make an upper

level request and process its response during the last

reporting interval.

Pages The total number of times the Virtual Client made upper

level requests, both successful and unsuccessful, during

the last reporting interval.

Pages Per Second The number of times the Virtual Clients made upper

level requests divided by the elapsed time, in seconds.

The value posted in the Current Value column is the

number (sum) of requests per second during the last

reporting interval.

Per Time Unit statistics Ratios that calculate an average value for an action or

process. For example: Transactions Per Second, Rounds

Per Second.

Portfolio A Portfolio of reports enables you to generate a single,

inclusive report that contains all the charts generated by

the templates included in the portfolio.

Probing Client A software program which "bombards" the SUT as a

single Virtual Client, to further measure the performance

of the SUT. WebLOAD generates exact values for

Probing Client performance.

Probing Client Machines Hosts running Probing Client software simulating one

Virtual Client, and running at the same time as Load

Machines.

Probing Client software See Probing Client.

Process Time The time it takes WebLOAD to parse an HTTP response

from the SUT and then populate the document-object

model (DOM), in seconds.

The value posted in the Current Value column is the

average time it took WebLOAD to parse an HTTP

response during the last reporting interval.

Receive Time The elapsed time between receiving the first byte and the

last byte.

Report Portfolio See Portfolio.

JavaScript Reference Guide  491 

Glossary Term Description

Resource Manager Distributes and circulates WebLOAD testing resources

(Virtual Clients and Probing Clients) amongst users on a

"need to use" basis. The Resource Manager is packaged

with a maximum number of Virtual Clients, Probing

Clients and Connected Workstation ports, as defined by

the WebLOAD package.

With the Resource Manager, every WebLOAD Console

can operate in Standalone Workstation mode or

Connected Workstation mode.

Response Data Size The size, in bytes, of all the HTTP responses sent by the

SUT during the last reporting interval.

WebLOAD uses this value to calculate Throughput

(bytes per second).

Response Time The time it takes the SUT to send the object of an HTTP

request back to a Virtual Client, in seconds. In other

words, the time from the end of the HTTP request until

the Virtual Client has received the complete item it

requested.

The value posted in the Current Value column is the

average time it took the SUT to respond to an HTTP

request during the last reporting interval.

Responses The number of times the SUT responded to an HTTP

request during the last reporting interval.

This number should match the number of successful hits.

Round Time The time it takes one Virtual Client to finish one

complete iteration of a script, in seconds.

The value posted in the Current Value column is the

average time it took the Virtual Clients to finish one

complete iteration of the script during the last reporting

interval.

Rounds The total number of times the Virtual Clients attempted

to run the script during the last reporting interval.

Rounds Per Second The number of times the Virtual Clients attempted to run

the script, divided by the elapsed time, in seconds.

The value posted in the Current Value column is the

number (sum) of attempts (both successful and

unsuccessful) per second during the last reporting

interval.

 492  Appendix E. Error! No text of specified style in document.

Glossary Term Description

Send Time The time it takes the Virtual Client to write an HTTP

request to the SUT, in seconds.

The value posted in the Current Value column is the

average time it took the Virtual Clients to write a request

to the SUT during the last reporting interval.

Server Performance

Measurements

If you selected Performance Monitor statistics for the

report, WebLOAD creates a row for them and reports

their values in the Statistics Report.

For definitions of the statistics, see the Server Monitor

Definition dialog box.

Be selective when choosing server performance

measurements , otherwise the system resources required

to manage the data might affect the Console.

Session Tree A graphic representation of a Load Template and status.

It illustrates the different components of a test session,

including Load Machines and Probing Clients, the scripts

that they execute, and their status.

Single Client See Probing Client.

Standard Deviation The average amount the measurement varies from the

average since the beginning of the test.

Successful Connections The total number of times the Virtual Clients were able to

successfully connect to the SUT during the last reporting

interval.

This number is always less than or equal to the number

of successful hits because several hits might use the same

HTTP connection if the Persistent Connection option is

enabled.

Successful Hits The total number of times the Virtual Clients made an

HTTP request and received the correct HTTP response

from the SUT during the last reporting interval. Each

request for each gif, jpeg, html file, etc., is a single hit.

Successful Hits Per Second The number of times the Virtual Clients obtained the

correct HTTP response to their HTTP requests divided

by the elapsed time, in seconds.

The value posted in the Current Value column is the

number (sum) of successful HTTP requests per second

during the last reporting interval.

Successful Pages Per Second The value posted in the Current Value column is the

number (sum) of successful requests per second during

the last reporting interval.

JavaScript Reference Guide  493 

Glossary Term Description

Successful Rounds The total number of times the Virtual Clients completed

one iteration of the script during the last reporting

interval.

Successful Rounds Per Second The number of times the Virtual Clients completed an

entire iteration of the script, divided by the elapsed time,

in seconds.

The value posted in the Current Value column is the

number (sum) of successful iterations of the script per

second during the last reporting interval.

SUT The system running the Web application currently under

test. The SUT (System Under Test) is accessed by clients

through its URL address. The SUT can reside on any

machine or on multiple machines, anywhere on the

global Internet or your local intranet.

Template See Load Template.

Templates Gallery The Templates Gallery is a single entity that contains

predefined templates, user-defined templates, and

portfolios.

Test Program See Test Script.

Test Script The script. This defines the test scenario used in your

Load Session. Scripts are written in JavaScript.

Test Template See Load Template.

TestTalk The network agent. This program enables

communication between the Console and the host

computers participating in the test.

Throttle Control A WebLOAD component that enables you to

dynamically change the Load Size while a test session is

in progress.

Throughput (Bytes Per Second) The average number of bytes per second transmitted

from the SUT to the Virtual Clients running the script

during the last reporting interval. In other words, this is

the amount of the Response Data Size, divided by the

number of seconds in the reporting interval.

Time to First Byte The time that elapsed since a request was sent until the

Virtual Client received the first byte of data.

 494  Appendix E. Error! No text of specified style in document.

Glossary Term Description

User-defined Automatic Data

Collection

If you have Automatic Data Collection enabled,

WebLOAD creates three counters for each GET and

POST statement in the script:

 The total number of times the Get and Post

statements occurred

 The number of times the statements succeeded

 The number of times the statements failed during the

last reporting interval.

User-defined counters Your own counters that you can add to scripts using the

SendCounter() and the SendMeasurement()

functions (see the WebLOAD Scripting Guide). If there is a

user-defined counter in the script that you are running,

WebLOAD reports the counter’s values in the Statistics

Report.

The row heading is the name (argument) of the counter.

That is, the row heading is the string in parenthesis in the

SendCounter() or SendMeasurement() function call.

The value reported is the number of times the counter

was incremented during the last reporting interval.

User-defined timer Timers that you can add to scripts to keep track of the

amount of time it takes to complete specific actions (see

the WebLOAD Scripting Guide). If there are any timers in

the scripts that you are running, WebLOAD reports their

values in the Statistics Report.

The row heading is the name (argument) of the timer.

That is, the row heading is the string in parenthesis in the

SetTimer() function call. The timer represents the time

it takes to complete all the actions between the

SetTimer() call and its corresponding SendTimer()

call, in seconds.

The value posted is the average time it took a Virtual

Client to complete the actions between the pair of timer

calls, in seconds, during the last reporting interval.

JavaScript Reference Guide  495 

Glossary Term Description

User-defined Transaction

counters

Transaction functions that you can add to scripts for

functional tests (see the WebLOAD Scripting Guide). If

there is a user-defined transaction function in the script

that you are running, WebLOAD reports three counters

for it in the Statistics Report:

 The total number of times the transaction occurred

 The number of times a transaction succeeded

 The number of times a transaction failed during the

last reporting interval.

The row heading is the name (argument) of the

transaction. That is, the row heading is the string in

parenthesis in the BeginTransaction() function call.

User-defined Transactions

timers

A timer for user-defined transaction functions. If there is

a user-defined transaction function in the script that you

are running, WebLOAD reports a timer for it in the

Statistics Report.

The row heading is the name (argument) of the user-

defined transaction. That is, the row heading is the string

in parenthesis in the BeginTransaction() function

call.

The timer represents the average time it took to complete

all the actions between the BeginTransaction() call

and its corresponding EndTransaction() call, in

seconds, during the last reporting interval.

Virtual Client Artificial entities run by Load Generators. Each such

entity is a perfect simulation of a real client accessing the

System Under Test (SUT) through a Web browser.

Virtual Clients generate HTTP calls that access the SUT.

The Load Generators that run Virtual Clients can reside

anywhere on the Internet or on your local intranet.

Scripts are executed by all the Virtual Clients in parallel,

achieving simultaneous access to the SUT. The size of the

load on your SUT is determined by the number of Virtual

Clients being generated. You may define as many Virtual

Clients as needed, up to the maximum supported by

your WebLOAD “package.”

WebLOAD Analytics WebLOAD Analytics enables you to analyze data, and

create custom, informative reports after running a

WebLOAD test session.

WebLOAD Console See Console.

WebLOAD Integrated

Development Environment

(IDE)

An easy-to-use tool for recording, creating, and

authoring protocol scripts for the WebLOAD

environment.

 496  Appendix E. Error! No text of specified style in document.

Glossary Term Description

WebLOAD Load Template See Load Template.

WebLoad Session See Load Session.

WebLOAD Wizard A WebLOAD Wizard that steps you through the

configuration process. Each screen of the WebLOAD

Wizard contains text explaining the configuration

process. The WebLOAD Wizard enables you to create a

basic Load Template. After using the demo, you can use

the Console menus to add functionality not available

through the WebLOAD Wizard.

WebRM See Resource Manager.

JavaScript Reference Guide  497 

Index

A
AAT ▪ 483

Aborted Rounds ▪ 483

AcceptEncodingGzip (property) ▪ 37

AcceptLanguage (property) ▪ 38

Accessing script components ▪ 14

Accessing the JavaScript code within the Script

Tree ▪ 17

action (property) ▪ 39

Add() (method) ▪ 39

AddAttachment() ▪ 371, 389, 410, 417

Append() ▪ 350, 362

AppendFile() ▪ 350, 362

Application Being Tested (ABT) ▪ 483

ArticleText ▪ 386

Async (property) ▪ 41

Attachments ▪ 386, 408, 414

AttachmentsArr ▪ 369

AttachmentsEncoding ▪ 386, 408, 414

AttachmentsTypes ▪ 387, 408, 415

Attempted Connections ▪ 483

AuthType (property) ▪ 40

AutoDelete ▪ 395, 403

Automatic Transactions

counters ▪ 483

Average ▪ 483

B
Bcc ▪ 369, 409, 415

BeginTransaction() (function) ▪ 42

Bind() ▪ 433

Broadcast() ▪ 433

Built-in Timer ▪ 484

C
Cc ▪ 369, 409, 415

cell (object) ▪ 44

cellIndex (property) ▪ 46

ChangeDir() ▪ 350, 362

Character sets ▪ 479

CharEncoding (property) ▪ 47

checked (property) ▪ 48

ChFileMod() ▪ 351, 362

ChMod() ▪ 351, 363

ClearAll() (method) ▪ 48

ClearCookiesAtEndOfRound (property) ▪ 48

ClearDNSCache() (method) ▪ 49

ClearSSLCache() (method) ▪ 49

ClientNum (property) ▪ 50

Close() (function) ▪ 52

close() (method) ▪ 446

CloseConnection() (method) ▪ 53

Collections ▪ 27

cols (property) ▪ 54

Connect Time ▪ 484

Connect() ▪ 371, 376, 390, 398, 405, 411, 417, 422,

426

connect() (method) ▪ 446

Connection Speed (Bits Per Second) ▪ 484

ConnectionSpeed (property) ▪ 55

ConnectTimeout (property) ▪ 55

Console ▪ 485

content (property) ▪ 56

ContentLength (function) ▪ 57, 338

ContentType (property) ▪ 58

ConvertHiddenFields (method) ▪ 58

CookieDomain (property) ▪ 59

CookieExpiration (property) ▪ 60

CookiePath (property) ▪ 60

CopyFile() (function) ▪ 61

Count ▪ 485

CreateDOM() (function) ▪ 63

CreateMailbox() ▪ 376

CreateTable() (function) ▪ 65

Current Slice ▪ 485

average ▪ 485

count ▪ 485

max ▪ 485

min ▪ 485

standard deviation ▪ 486

sum ▪ 486

CurrentMessage ▪ 374

CurrentMessageID ▪ 374

D
Data ▪ 348, 359

Data (property) ▪ 66

DataFile ▪ 348, 360

DataFile (property) ▪ 67

 498  Index

DebugMessage() (function) ▪ 68

DecodeBinaryEnd (property) ▪ 69

DecodeBinaryNullAs (property) ▪ 70

DecodeBinaryStart (property) ▪ 70

defaultchecked (property) ▪ 71

defaultselected (property) ▪ 72

defaultvalue (property) ▪ 72

DefineConcurrent() (function) ▪ 72

Delete() ▪ 351, 363, 377, 398, 405

Delete() (cookie method) ▪ 75

Delete() (HTTP method) ▪ 74

Delete() (method) ▪ 74

DeleteAttachment() ▪ 372

DeleteAttachment() ▪ 390

DeleteAttachment() ▪ 411

DeleteAttachment() ▪ 418

DeleteEmptyCookies (property) ▪ 76

DeleteFile() ▪ 352, 363

DeleteMailbox() ▪ 377

Dir() ▪ 352, 364

DisableSleep (property) ▪ 76

Disconnect ▪ 418

Disconnect() ▪ 372, 377, 390, 398, 405, 411, 422,

427

DisplayMetrics() ▪ 372

DNS Lookup Time ▪ 486

DNSUseCache (property) ▪ 77

document ▪ 348, 360, 374, 396, 403, 419, 425, 430

Document ▪ 387

document (object) ▪ 78, 301

DOM objects commonly used in a script ▪ 10

Download() ▪ 352, 364

DownloadFile() ▪ 353, 364

E
Editing the JavaScript code in a script ▪ 17

ElapsedRoundTime (property) ▪ 79

element (object) ▪ 80

EncodeBinary (property) ▪ 82

EncodeFormdata (property) ▪ 82

EncodeRequestBinaryData (property) ▪ 83

EncodeResponseBinaryData (property) ▪ 84

encoding (property) ▪ 84

EndTransaction() (function) ▪ 85

EnforceCharEncoding (property) ▪ 87

Erase (property) ▪ 88

Erase() ▪ 422, 427, 433

ErrorMessage (property) ▪ 91

ErrorMessage() (function) ▪ 90

EvaluateScript() (function) ▪ 91

event (property) ▪ 92

Example

XML parser object ▪ 443

ExecuteConcurrent() (function) ▪ 92

F
Failed Connections ▪ 486

Failed Hits ▪ 486

Failed Hits Per Second ▪ 486

Failed Pages Per Second ▪ 486

Failed Rounds ▪ 486

Failed Rounds Per Second ▪ 486

File management functions ▪ 28

FileName (property) ▪ 94

FilterURL (property) ▪ 95

First Byte ▪ 486

form (object) ▪ 96

FormData (property) ▪ 97

frames (object) ▪ 99

From ▪ 369, 387, 409, 416

FTP Sample Code ▪ 356

Function (property) ▪ 100

G
GeneratorName() (function) ▪ 101

Get() (addition method) ▪ 102

Get() (cookie method) ▪ 103

Get() (method) ▪ 102

Get() (transaction method) ▪ 104

GetApplets (property) ▪ 107

GetArticle() ▪ 390

GetArticleCount() ▪ 391

GetCss (property) ▪ 108

GetCurrentMessageID() ▪ 398, 405

GetCurrentPath() ▪ 353, 365

GetElementById() (method) ▪ 108

GetElementByName() (method) ▪ 110

GetElementsById() (method) ▪ 109

GetElementsByName() (method) ▪ 110

GetElementValueById() (method) ▪ 111

GetElementValueByName() (method) ▪ 112

GetEmbeds (property) ▪ 113

GetFieldValue() (method) ▪ 113

GetFieldValueInForm() (method) ▪ 114

JavaScript Reference Guide  499 

GetFormAction() (method) ▪ 115

GetFrameByUrl() (method) ▪ 116

GetFrames (property) ▪ 117

GetFrameUrl() (method) ▪ 117

GetHeaderValue() (method) ▪ 118

GetHost() (method) ▪ 119

GetHostName() (method) ▪ 120

GetImages (property) ▪ 121

GetImagesInThinClient (property) ▪ 122

GetIPAddress() (method) ▪ 122

GetLine() (function) ▪ 123, 125

GetLinkByName() (method) ▪ 127

GetLinkByUrl() (method) ▪ 128

GetLocalHost() ▪ 372

GetMailboxSize() ▪ 399, 406

GetMessage() (method) ▪ 129

GetMessageCount() ▪ 377, 399, 406

GetMetas (property) ▪ 130

GetOperatingSystem() (function) ▪ 131

GetOthers (property) ▪ 131

GetPortNum() (method) ▪ 132

GetQSFieldValue() (method) ▪ 133

GetScripts (property) ▪ 134

GetSeverity() (method) ▪ 134

GetStatusLine() ▪ 353, 365, 372, 377, 391, 399,

406

GetStatusLine() (method) ▪ 135

GetStatusNumber() (method) ▪ 136

GetUri() (method) ▪ 137

GetXML (property) ▪ 138

Goal–Oriented Test ▪ 487

Goal–Oriented Test Wizard ▪ 487

Group ▪ 387

GroupOverview() ▪ 391

H
hash (property) ▪ 139

Head() (method) ▪ 139

Header (property) ▪ 140

Headers[] ▪ 396, 403

Hit Time ▪ 487

Hits ▪ 487

Hits Per Second ▪ 487

Host ▪ 369, 487

host (property) ▪ 142

hostname (property) ▪ 142

href (property) ▪ 143

HtmlFilePath ▪ 370

HtmlText ▪ 370

HTTP components ▪ 24

HTTP Protocol Status Messages ▪ 465

HTTP Response Status ▪ 488

HttpCacheScope (property) ▪ 143

HttpCacheUncachedTypes (property) ▪ 144

httpEquiv (property) ▪ 145

HttpsProxy (property) ▪ 145

HttpsProxyNTPassWord (property) ▪ 146

HttpsProxyNTUserName (property) ▪ 146

HttpsProxyUserName (property) ▪ 145

I
id (property) ▪ 147

Identification variables and functions ▪ 29

Image (object) ▪ 149

IMAP Sample Code ▪ 382

InBufferSize ▪ 420, 430

IncludeFile() (function) ▪ 150

Index (property) ▪ 152

InfoMessage() (function) ▪ 153

InnerHTML (property) ▪ 154

InnerImage (property) ▪ 155

InnerLink (property) ▪ 155

InnerText (property) ▪ 156

Integrated Reports ▪ 488

Introduction ▪ 1

Introduction to JavaScript scripts ▪ 5

J
Java and ActiveX counters ▪ 488

Java and ActiveX timers ▪ 488

JVMType (property) ▪ 157

K
KDCServer (property) ▪ 158

KeepAlive (property) ▪ 159

KeepRedirectionHeaders (property) ▪ 160

key (property) ▪ 160

L
language (property) ▪ 161

link (object) ▪ 162

ListGroups() ▪ 391

ListLocalFiles() ▪ 353, 365

 500  Index

ListMailboxes() ▪ 378

Load Generator ▪ 489

Load Generator Machine ▪ 489

Load Session ▪ 489

Load Size ▪ 489

Load Template ▪ 489

load() (method) ▪ 163

load() and loadXML() method comparison ▪ 164

LoadGeneratorThreads (property) ▪ 165

loadXML() (method) ▪ 167

LocalHost ▪ 430

LocalPort ▪ 420, 431

location (object) ▪ 168

Logoff() ▪ 354, 365

Logon() ▪ 354, 366

M
Mailbox ▪ 375

MakeDir() ▪ 354, 366

MaxDatagramSize ▪ 431

MaxHeadersLength ▪ 387

MaxLength (property) ▪ 170

MaxLines ▪ 375, 396, 404

MaxPageTime (function) ▪ 170, 338

Message ▪ 370, 409, 416

Message functions ▪ 30

MessageDate ▪ 370

method (property) ▪ 171

Methods

XML parser object ▪ 438

MultiIPSupport (property) ▪ 171

MultiIPSupportProtocol (property) ▪ 173

MultiIPSupportType (property) ▪ 172

N
Name (property) ▪ 174

NextPrompt ▪ 420, 425

NextSize ▪ 420

NNTP Sample Code ▪ 393

NTUserName, NTPassWord (properties) ▪ 176

Num() (method) ▪ 177

NumOfResponses ▪ 431

O
Objects ▪ 32

onDataReceived (property) ▪ 177

onDocmentComplete (property) ▪ 179

onerror(evt) (event) ▪ 447

Online Help ▪ 4

onmessage(evt) (event) ▪ 447

onopen(evt) (event) ▪ 447

Open() (function) ▪ 180, 183

option (object) ▪ 185

Options() (method) ▪ 186

Organization ▪ 388

OutBufferSize ▪ 420, 431

OuterLink (property) ▪ 188

Outfile ▪ 348, 360, 375, 388, 397, 404, 421, 425,

431

Outfile (property) ▪ 188

P
Page Time ▪ 490

PageContentLength (property) ▪ 189

Pages ▪ 490

Pages Per Second ▪ 490

PageTime (property) ▪ 190

Parse (property) ▪ 190

ParseApplets (property) ▪ 191

ParseCss (property) ▪ 192

ParseEmbeds (property) ▪ 193

ParseForms (property) ▪ 194

ParseImages (property) ▪ 195

ParseLinks (property) ▪ 196

ParseMetas (property) ▪ 197

ParseOnce (property) ▪ 198

ParseOthers (property) ▪ 199

ParseScripts (property) ▪ 200

ParseTables (property) ▪ 201

ParseXML (property) ▪ 202

PassiveMode ▪ 348, 360

Password ▪ 388

PassWord ▪ 349, 360, 375, 397, 404

PassWord (property) ▪ 203

pathname (property) ▪ 204

Per Time Unit statistics ▪ 490

POP Sample Code ▪ 400

port (property) ▪ 204

Post() (method) ▪ 205

PostArticle() ▪ 392

Probing Client ▪ 490

Probing Client Machine ▪ 490

Probing Client software ▪ 490

ProbingClientThreads (property) ▪ 208

JavaScript Reference Guide  501 

Process Time ▪ 490

Properties

XML parser object ▪ 442

protocol (property) ▪ 210

Proxy, ProxyUserName, ProxyPassWord

(properties) ▪ 210

ProxyExceptions (property) ▪ 211

ProxyNTPassWord (property) ▪ 212

ProxyNTUserName (property) ▪ 212

Put() (method) ▪ 213

R
Range() (method) ▪ 215

Receive Time ▪ 490

Receive() ▪ 422, 427, 433

ReceiveMessageText ▪ 421, 425, 432

ReceiveTimeout (property) ▪ 215

RecentMessageCount() ▪ 378

RedirectionLimit (property) ▪ 216

References ▪ 388

Referer (property) ▪ 217

remove() (method) ▪ 217

RemoveDir() ▪ 354, 366

Rename() ▪ 355, 366

RenameMailbox() ▪ 378

ReplyTo ▪ 370, 388, 409, 416

Report Portfolio ▪ 490

ReportEvent() (function) ▪ 218

ReportLog() (method) ▪ 219

RequestedPackets ▪ 432

RequestRetries (property) ▪ 220

Reset() ▪ 399, 406

Reset() (method) ▪ 220

Resource Manager ▪ 491

Response Data Size ▪ 491

Response Time ▪ 491

ResponseContentType (property) ▪ 221

Responses ▪ 491

Retrieve() ▪ 378, 399, 406

Round Time ▪ 491

RoundNum (variable) ▪ 222

Rounds ▪ 491

Rounds Per Second ▪ 491

row (object) ▪ 223

rowIndex (property) ▪ 224

S
SaveHeaders (property) ▪ 225

SaveSource (property) ▪ 226

SaveTransaction (property) ▪ 226

script ▪ 483

script (object) ▪ 228

search (property) ▪ 229

Search() ▪ 379

Seed() (method) ▪ 229

Select ▪ 230

Select() (method) ▪ 230

selected (property) ▪ 235

selectedindex (property) ▪ 235

SelectSecondTimeout (property) ▪ 230

SelectSwitchNum (property) ▪ 231

SelectTimeout (property) ▪ 232

SelectWriteSecondTimeout (property) ▪ 233

SelectWriteSwitchNum (property) ▪ 234

SelectWriteTimeout (property) ▪ 234

Send Time ▪ 492

Send() ▪ 372, 412, 418, 423, 427, 434

send() (method) ▪ 446

SendBufferSize (property) ▪ 235

SendClientStatistics (property) ▪ 236

SendClientStatisticsFilter (property) ▪ 236

SendCommand() ▪ 355, 367, 373, 381, 392, 400,

407, 412, 418

SendCounter() (function) ▪ 237

SendMeasurement() (function) ▪ 238

SendTimer() (function) ▪ 239

Server Performance Measurements ▪ 492

Session Tree ▪ 492

Set() (addition method) ▪ 240

Set() (cookie method) ▪ 241

Set() (method) ▪ 240

SetClientType (function) ▪ 242

SetFailureReason() (function) ▪ 243

SetLocalHost() ▪ 373

setTimeout() (function) ▪ 244

SetTimer() (function) ▪ 245

SevereErrorMessage() (function) ▪ 246

Severity (property) ▪ 247

Single Client ▪ 492

Size ▪ 349, 361, 370, 376, 388, 397, 404, 410, 416,

421, 426, 432

Size (property) ▪ 247

Sleep() (function) ▪ 248

 502  Index

SleepDeviation (property) ▪ 249

SleepRandomMax (property) ▪ 250

SleepRandomMin (property) ▪ 251

SMTP Sample Code ▪ 413

src (property) ▪ 252

SSL Cipher Command Suite ▪ 33

SSLBitLimit (property) ▪ 253

SSLCipherSuiteCommand() (function) ▪ 255

SSLClientCertificateFile,

SSLClientCertificatePassword (properties) ▪

256

SSLCryptoStrength (property) ▪ 258

SSLDisableCipherID() (function) ▪ 260

SSLDisableCipherName() (function) ▪ 261

SSLEnableCipherID() (function) ▪ 264

SSLEnableCipherName() (function) ▪ 265

SSLEnableStrength() (function) ▪ 262

SSLGetCipherCount() (function) ▪ 266

SSLGetCipherID() (function) ▪ 267

SSLGetCipherInfo() (function) ▪ 269

SSLGetCipherName() (function) ▪ 270

SSLGetCipherStrength() (function) ▪ 271

SSLUseCache (property) ▪ 272

SSLVersion (property) ▪ 274

Standard Deviation ▪ 492

StartByte ▪ 349, 361

StopGenerator () (method) ▪ 276

string (property) ▪ 277

Subject ▪ 370, 389, 410, 416

SubscribeMailbox() ▪ 381

Successful Connections ▪ 492

Successful Hits ▪ 492

Successful Hits Per Second ▪ 492

Successful Pages Per Seconds ▪ 492

Successful Rounds ▪ 493

Successful Rounds Per Second ▪ 493

Supported character sets ▪ 479

SUT ▪ 483, 493

SynchronizationPoint() (function) ▪ 277

T
tagName (property) ▪ 279

target (property) ▪ 280

TCP Sample Code ▪ 423

Technical Support ▪ 4

Technical Support Website ▪ 4

Telnet Sample Code ▪ 428

Template ▪ 493

Test Program ▪ 493

Test Script ▪ 493

Test Template ▪ 493

TestTalk ▪ 493

text (function) ▪ 281, 338

ThreadNum () (property) ▪ 282

Throttle Control ▪ 493

Throughput (Bytes Per Second) ▪ 493

Time to First Byte ▪ 493

Timeout ▪ 421, 426, 432

TimeoutSeverity (property) ▪ 283

Timing functions ▪ 34

title (property) ▪ 284

Title() (function) ▪ 285

To ▪ 371, 389, 410, 416

Transaction verification components ▪ 36

TransactionTime (property) ▪ 287

TransferMode ▪ 349, 361

Type ▪ 410, 417

type (property) ▪ 288

Typographical Conventions ▪ 3

U
UDP Sample Code ▪ 434

UnBind() ▪ 434

Understanding the DOM structure ▪ 8

UnsubscribeMailbox() ▪ 381

Upload() ▪ 355, 367

UploadFile() ▪ 356, 367

UploadUnique() ▪ 356, 368

Url (property) ▪ 289

UserAgent (property) ▪ 291

User-defined Automatic Data Collection ▪ 494

User-defined counters ▪ 494

User-defined timer ▪ 494

User-defined Transaction counters ▪ 495

User-defined Transactions timers ▪ 495

UserName ▪ 350, 361, 376, 389, 397, 404

UserName (property) ▪ 291

UseSameProxyForSSL (property) ▪ 292

Using the IntelliSense JavaScript Editor ▪ 18

Using the WebLOAD JavaScript Reference ▪ 23

UsingTimer (property) ▪ 293

V
value (property) ▪ 294

JavaScript Reference Guide  503 

VCUniqueID() (function) ▪ 296

VerificationFunction() (user-defined) (function)

▪ 297

Verify() ▪ 373, 412, 418

Version (property) ▪ 299

Virtual Client ▪ 495

W
WarningMessage() (function) ▪ 299

WebLOAD Actions, Objects, and Functions ▪ 37

WebLOAD Analytics ▪ 495

WebLOAD Console ▪ 495

WebLOAD Documentation ▪ 1

WebLOAD extension set ▪ 12

WebLOAD Integrated Development

Environment (IDE) ▪ 495

WebLOAD Internet Protocols Reference ▪ 347

WebLOAD Load Template ▪ 496

WebLOAD scripts work with an extended

version of the standard DOM ▪ 6

WebLOAD Session ▪ 496

WebLOAD Wizard ▪ 496

WebLOAD-supported SSL Protocol Versions ▪

449

WebSocket Object

events ▪ 447

methods ▪ 446

overview ▪ 445

Sample code ▪ 448

WebSocket() (constructor) ▪ 445

What are scripts? ▪ 5

What is the Document Object Model? ▪ 7

When would I edit the JavaScript in my scripts?

▪ 13

Where to Get More Information ▪ 3

wlClear() (method) ▪ 301

wlCookie (object) ▪ 302

wlDataFileField (method) () ▪ 304

wlDataFileParam () ▪ 304

wlException (object) ▪ 306

wlException() (constructor) ▪ 308

wlFTP Methods ▪ 350

wlFTP Object ▪ 347

wlFTP Properties ▪ 348

WLFtp() ▪ 356

wlFTPs Methods ▪ 362

wlFTPs Object ▪ 359

wlFTPs Properties ▪ 359

WLFtps() ▪ 368

wlGeneratorGlobal (object) ▪ 309

wlGet() (method) ▪ 310

wlGetAllForms() (method) ▪ 311

wlGetAllFrames() (method) ▪ 312

wlGetAllLinks() (method) ▪ 312

wlGlobals (object) ▪ 313

wlHeaders (object) ▪ 314

wlHtml (object) ▪ 315

WLHtmlMailer() ▪ 373

wlHtmMailer Methods ▪ 371

wlHtmMailer Object ▪ 368

wlHtmMailer Properties ▪ 369

wlHttp (object) ▪ 316

wlIMAP Methods ▪ 376

wlIMAP Object ▪ 374

wlIMAP Properties ▪ 374

WLImap() ▪ 381

wlInputFile (object) ▪ 317

wlInputFile() (constructor) ▪ 318

wlLocals (object) ▪ 319

wlMetas (object) ▪ 320

wlNNTP Methods ▪ 389

wlNNTP Object ▪ 385

wlNNTP Properties ▪ 386

WLNntp() ▪ 393

wlNumberParam() (parameterization) ▪ 321

wlOutputFile (object) ▪ 323

wlOutputFile() (constructor) ▪ 324

wlPOP Methods ▪ 398

wlPOP Object ▪ 395

wlPOP Properties ▪ 395

WLPop() ▪ 400

wlPOPs Methods ▪ 405

wlPOPs Object ▪ 402

wlPOPs Properties ▪ 403

WLPops() ▪ 407

wlRand (object) ▪ 326

wlSearchPairs (object) ▪ 327

wlSet() (method) ▪ 328

wlSMTP Methods ▪ 410

wlSMTP Object ▪ 407

wlSMTP Properties ▪ 408

WLSmtp() ▪ 412

wlSMTPs Methods ▪ 417

wlSMTPs Object ▪ 414

 504  Index

wlSMTPs Properties ▪ 414

WLSmtps() ▪ 419

wlSource ▪ 397, 405

wlSource (property) ▪ 330

wlStatusLine (property) ▪ 331

wlStatusNumber (property) ▪ 331

wlStringParam () (parameterization ▪ 331

wlSystemGlobal (object) ▪ 332

wlTables (object) ▪ 333

wlTarget (property) ▪ 334

wlTCP Methods ▪ 422

wlTCP Object ▪ 419

wlTCP Properties ▪ 419

WLTcp() ▪ 423

wlTelnet Methods ▪ 426

wlTelnet Object ▪ 424

wlTelnet Properties ▪ 425

WLTelnet() ▪ 427

wlTimeParam() (parameterization) ▪ 335

wlUDP Methods ▪ 433

wlUDP Object ▪ 430

wlUDP Properties ▪ 430

WLUdp() ▪ 434

wlVerification (object) ▪ 337

wlVersion (property) ▪ 338

WLXmlDocument() (constructor) ▪ 339

wlXmls (object) ▪ 340

Write() (method) ▪ 343

Writeln() (method) ▪ 344

X
XML parser object

example ▪ 443

methods ▪ 438

properties ▪ 442

XML parser Object

overview ▪ 437

XMLDocument (property) ▪ 345

XMLParserObject (object) ▪ 346

	Chapter 1.
Introduction
	WebLOAD Documentation
	Typographical Conventions
	Where to Get More Information
	Online Help
	Technical Support Website
	Technical Support

	Chapter 2. Introduction to JavaScript Scripts

	What are scripts?
	WebLOAD scripts Work with an Extended Version of the Standard DOM
	What is the Document Object Model?
	Understanding the DOM Structure
	DOM Objects Commonly Used in a script
	WebLOAD Extension Set

	When Would I Edit the JavaScript in My scripts?
	Accessing script Components
	Editing the JavaScript Code in a script
	Accessing the JavaScript Code within the Script Tree
	Using the IntelliSense JavaScript Editor

	Chapter 3.
Using the WebLOAD JavaScript Reference
	HTTP Components
	Collections
	File Management Functions
	Identification Variables and Functions
	Message Functions
	Objects
	SSL Cipher Command Suite
	Timing Functions
	Parameterization
	Transaction Verification Components

	Chapter 4.
WebLOAD Actions, Objects, and Functions
	AcceptEncodingGzip (property)
	AcceptLanguage (property)
	action (property)
	Add() (method)
	AuthType (property)
	Async (property)
	BeginTransaction() (function)
	cell (object)
	cellIndex (property)
	CharEncoding (property)
	checked (property)
	ClearAll() (method)
	ClearCookiesAtEndOfRound (property)
	ClearDNSCache() (method)
	ClearSSLCache() (method)
	ClientNum (property)
	Close() (function)
	CloseConnection() (method)
	cols (property)
	ConnectTimeout (property)
	ConnectionSpeed (property)
	content (property)
	ContentLength (function)
	ContentType (property)
	ConvertHiddenFields(method)
	CookieDomain (property)
	CookieExpiration (property)
	CookiePath (property)
	CopyFile() (function)
	CreateDOM() (function)
	CreateTable() (function)
	Data (property)
	DataFile (property)
	DebugMessage() (function)
	DecodeBinaryEnd (property)
	DecodeBinaryNullAs (property)
	DecodeBinaryStart (property)
	defaultchecked (property)
	defaultselected (property)
	defaultvalue (property)
	DefineConcurrent() (function)
	Delete() (method)
	Delete() (HTTP method)
	Delete() (cookie method)

	DeleteEmptyCookies (property)
	DisableSleep (property)
	DNSUseCache (property)
	document (object)
	ElapsedRoundTime (property)
	element (object)
	EncodeBinary (property)
	EncodeFormdata (property)
	EncodeRequestBinaryData (property)
	EncodeResponseBinaryData (property)
	encoding (property)
	EndTransaction() (function)
	EnforceCharEncoding (property)
	Erase (property)
	ErrorMessage() (function)
	ErrorMessage (property)
	EvaluateScript() (function)
	event (property)
	ExecuteConcurrent() (function)
	extractValue()(function)
	FileName (property)
	FilterURL (property)
	form (object)
	FormData (property)
	frames (object)
	Function (property)
	GeneratorName() (function)
	Get() (method)
	Get() (addition method)
	Get() (cookie method)
	Get() (transaction method)

	GetApplets (property)
	GetCss (property)
	GetElementById() (function)
	GetElementsById() (function)
	GetElementByName() (function)
	GetElementsByName() (function)
	GetElementValueById() (function)
	GetElementValueByName() (function)
	GetEmbeds (property)
	GetFieldValue() (method)
	GetFieldValueInForm() (method)
	GetFormAction() (method)
	GetFrameByUrl() (method)
	GetFrames (property)
	GetFrameUrl() (method)
	GetHeaderValue() (method)
	GetHost() (method)
	GetHostName() (method)
	GetImages (property)
	GetImagesInThinClient (property)
	GetIPAddress() (method)
	GetLine() (function)
	GetLine() (method)
	GetLinkByName() (method)
	GetLinkByUrl() (method)
	GetMessage() (method)
	GetMetas (property)
	GetOperatingSystem() (function)
	GetOthers (property)
	GetPortNum() (method)
	GetQSFieldValue() (method)
	GetScripts (property)
	GetSeverity() (method)
	GetStatusLine() (method)
	GetStatusNumber() (method)
	GetUri() (method)
	GetXML (property)
	hash (property)
	Head() (method)
	Header (property)
	host (property)
	hostname (property)
	href (property)
	HttpCacheScope (property)
	HttpCacheCachedTypes (property)
	httpEquiv (property)
	HttpsProxy, HttpsProxyUserName, HttpsProxyPassWord (properties)
	HttpsProxyNTUserName, HttpsProxyNTPassWord (properties)
	id (property)
	Image (object)
	IncludeFile() (function)
	Index (property)
	InfoMessage() (function)
	InnerHTML (property)
	InnerImage (property)
	InnerLink (property)
	InnerText (property)
	JVMType (property)
	KDCServer (property)
	KeepAlive (property)
	KeepRedirectionHeaders (property)
	key (property)
	language (property)
	link (object)
	load() (method)
	load() and loadXML() Method Comparison
	LoadGeneratorThreads (property)
	loadXML() (method)
	location (object)
	MaxLength (property)
	MaxPageTime (function)
	method (property)
	MultiIPSupport (property)
	MultiIPSupportType (property)
	MultiIPSupportProtocol (property)
	Name (property)
	NTUserName, NTPassWord (properties)
	Num() (method)
	onDataReceived (property)
	onDocumentComplete (property)
	Open() (method)
	Open() (function)
	option (object)
	Options() (method)
	OuterLink (property)
	Outfile (property)
	PageContentLength (property)
	PageTime (property)
	Parse (property)
	ParseApplets (property)
	ParseCss (property)
	ParseEmbeds (property)
	ParseForms (property)
	ParseImages (property)
	ParseLinks (property)
	ParseMetas (property)
	ParseOnce (property)
	ParseOthers (property)
	ParseScripts (property)
	ParseTables (property)
	ParseXML (property)
	PassWord (property)
	pathname (property)
	port (property)
	Post() (method)
	ProbingClientThreads (property)
	protocol (property)
	Proxy, ProxyUserName, ProxyPassWord (properties)
	ProxyExceptions (property)
	ProxyNTUserName, ProxyNTPassWord (properties)
	Put() (method)
	Range() (method)
	ReceiveTimeout (property)
	RedirectionLimit (property)
	Referer (property)
	remove() (method)
	ReportEvent() (function)
	ReportLog() (method)
	RequestRetries (property)
	Reset() (method)
	ResponseContentType (property)
	RoundNum (variable)
	row (object)
	rowIndex (property)
	SaveHeaders (property)
	SaveSource (property)
	SaveTransaction (property)
	script (object)
	search (property)
	Seed() (method)
	Select
	Select() (method)

	SelectSecondTimeout (property)
	SelectSwitchNum (property)
	SelectTimeout (property)
	SelectWriteSecondTimeout (property)
	SelectWriteSwitchNum (property)
	SelectWriteTimeout (property)
	selected (property)
	selectedindex (property)
	SendBufferSize (property)
	SendClientStatistics (property)
	SendClientStatisticsFilter (property)
	SendCounter() (function)
	SendMeasurement() (function)
	SendTimer() (function)
	Set() (method)
	Set() (addition method)
	Set() (cookie method)

	SetClientType (function)
	SetFailureReason() (function)
	setTimeout() (function)
	SetTimer() (function)
	SevereErrorMessage() (function)
	Severity (property)
	Size (property)
	Sleep() (function)
	SleepDeviation (property)
	SleepRandomMax (property)
	SleepRandomMin (property)
	src (property)
	SSLBitLimit (property)
	SSLCipherSuiteCommand() (function)
	SSLClientCertificateFile, SSLClientCertificatePassword (properties)
	SSLCryptoStrength (property)
	SSLDisableCipherID() (function)
	SSLDisableCipherName() (function)
	SSLEnableStrength() (function)
	SSLEnableCipherID() (function)
	SSLEnableCipherName() (function)
	SSLGetCipherCount() (function)
	SSLGetCipherID() (function)
	SSLGetCipherInfo() (function)
	SSLGetCipherName() (function)
	SSLGetCipherStrength() (function)
	SSLUseCache (property)
	SSLVersion (property)
	StopClient () (function)
	StopGenerator () (function)
	string (property)
	SynchronizationPoint() (function)
	tagName (property)
	target (property)
	Text (function)
	ThreadNum() (property)
	TimeoutSeverity (property)
	title (property)
	Title (function)
	TransactionTime (property)
	type (property)
	Url (property)
	UserAgent (property)
	UserName (property)
	UseSameProxyForSSL (property)
	UsingTimer (property)
	value (property)
	VCUniqueID() (function)
	VerificationFunction() (user-defined) (function)
	Version (property)
	WarningMessage() (function)
	window (object)
	wlClear() (method)
	wlCookie (object)
	wlDataFileField (method)
	wlDataFileParam() (parameterization)
	wlException (object)
	wlException() (constructor)
	wlGeneratorGlobal (object)
	wlGet() (method)
	wlGetAllForms() (method)
	wlGetAllFrames() (method)
	wlGetAllLinks() (method)
	wlGlobals (object)
	wlHeaders (object)
	wlHtml (object)
	wlHttp (object)
	wlInputFile (object)
	wlInputFile() (constructor)
	wlLocals (object)
	wlMetas (object)
	wlNumberParam() (parameterization)
	wlOutputFile (object)
	wlOutputFile() (constructor)
	wlRand (object)
	wlSearchPairs (object)
	wlSet() (method)
	wlSource (property)
	wlStatusLine (property)
	wlStatusNumber (property)
	wlStringParam() (parameterization)
	wlSystemGlobal (object)
	wlTables (object)
	wlTarget (property)
	wlTimeParam() (parameterization)
	wlVerification (object)
	wlVersion (property)
	WLXmlDocument() (constructor)
	wlXmls (object)
	Write() (method)
	Writeln() (method)
	XMLDocument (property)
	XMLParserObject (object)

	Chapter 5.
WebLOAD Internet Protocols Reference
	wlFTP Object
	wlFTP Properties
	Data
	DataFile
	document
	Outfile
	PassiveMode
	PassWord
	Size
	StartByte
	TransferMode
	UserName

	wlFTP Methods
	Append()
	AppendFile()
	ChangeDir()
	ChFileMod()
	ChMod()
	Delete()
	DeleteFile()
	Dir()
	Download()
	DownloadFile()
	GetCurrentPath()
	GetStatusLine()
	ListLocalFiles()
	Logoff()
	Logon()
	MakeDir()
	RemoveDir()
	Rename()
	SendCommand()
	Upload()
	UploadFile()
	UploadUnique()
	WLFtp()

	FTP Sample Code

	wlFTPs Object
	wlFTPs Properties
	Data
	DataFile
	document
	Outfile
	PassiveMode
	PassWord
	Size
	StartByte
	TransferMode
	UserName

	wlFTPs Methods
	Append()
	AppendFile()
	ChangeDir()
	ChFileMod()
	ChMod()
	Delete()
	DeleteFile()
	Dir()
	Download()
	DownloadFile()
	GetCurrentPath()
	GetStatusLine()
	ListLocalFiles()
	Logoff()
	Logon()
	MakeDir()
	RemoveDir()
	Rename()
	SendCommand()
	Upload()
	UploadFile()
	UploadUnique()
	WLFtps()

	wlHtmMailer Object
	wlHtmMailer Properties
	AttachmentsArr
	Bcc
	Cc
	From
	Host
	HtmlFilePath
	HtmlText
	Message
	MessageDate
	ReplyTo
	Size
	Subject
	To

	wlHtmMailer Methods
	AddAttachment()
	Connect()
	DeleteAttachment()
	Disconnect()
	DisplayMetrics()
	GetLocalHost()
	GetStatusLine()
	Send()
	SendCommand()
	SetLocalHost()
	Verify()
	WLHtmMailer()

	wlIMAP Object
	wlIMAP Properties
	CurrentMessage
	CurrentMessageID
	document
	Mailbox
	MaxLines
	Outfile
	PassWord
	Size
	UserName

	wlIMAP Methods
	Connect()
	CreateMailbox()
	Delete()
	DeleteMailbox()
	Disconnect()
	GetMessageCount()
	GetStatusLine()
	ListMailboxes()
	RecentMessageCount()
	RenameMailbox()
	Retrieve()
	Search()
	SendCommand()
	SubscribeMailbox()
	UnsubscribeMailbox()
	WLImap()

	IMAP Sample Code

	wlNNTP Object
	wlNNTP Properties
	ArticleText
	Attachments
	AttachmentsEncoding
	AttachmentsTypes
	Document
	From
	Group
	MaxHeadersLength
	Organization
	Outfile
	PassWord
	References
	ReplyTo
	Size
	Subject
	To
	UserName

	wlNNTP Methods
	AddAttachment()
	Connect()
	DeleteAttachment()
	Disconnect()
	GetArticle()
	GetArticleCount()
	GetStatusLine()
	GroupOverview()
	ListGroups()
	PostArticle()
	SendCommand()
	WLNntp()

	NNTP Sample Code

	wlPOP Object
	wlPOP Properties
	AutoDelete
	document
	Headers[]
	MaxLines
	Outfile
	PassWord
	Size
	UserName
	wlSource

	wlPOP Methods
	Connect()
	Delete()
	Disconnect()
	GetCurrentMessageID()
	GetMailboxSize()
	GetMessageCount()
	GetStatusLine()
	Reset()
	Retrieve()
	SendCommand()
	WLPop()

	POP Sample Code

	wlPOPs Object
	wlPOPs Properties
	AutoDelete
	document
	Headers[]
	MaxLines
	Outfile
	PassWord
	Size
	UserName
	wlSource

	wlPOPs Methods
	Connect()
	Delete()
	Disconnect()
	GetCurrentMessageID()
	GetMailboxSize()
	GetMessageCount()
	GetStatusLine()
	Reset()
	Retrieve()
	SendCommand()
	WLPops()

	wlSMTP Object
	wlSMTP Properties
	Attachments
	AttachmentsEncoding
	AttachmentsTypes
	Bcc
	Cc
	From
	Message
	ReplyTo
	Size
	Subject
	To
	Type

	wlSMTP Methods
	AddAttachment()
	Connect()
	DeleteAttachment()
	Disconnect()
	Send()
	SendCommand()
	Verify()
	WLSmtp()

	SMTP Sample Code

	wlSMTPs Object
	wlSMTPs Properties
	Attachments
	AttachmentsEncoding
	AttachmentsTypes
	Bcc
	Cc
	From
	Message
	ReplyTo
	Size
	Subject
	To
	Type

	wlSMTPs Methods
	AddAttachment()
	Connect()
	DeleteAttachment()
	Disconnect()
	Send()
	SendCommand()
	Verify()
	WLSmtps()

	wlTCP Object
	wlTCP Properties
	document
	InBufferSize
	LocalPort
	NextPrompt
	NextSize
	OutBufferSize
	Outfile
	ReceiveMessageText
	Size
	Timeout

	wlTCP Methods
	Connect()
	Disconnect()
	Erase()
	Receive()
	Send()
	WLTcp()

	TCP Sample Code

	wlTelnet Object
	wlTelnet Properties
	document
	NextPrompt
	Outfile
	ReceiveMessageText
	Size
	Timeout

	wlTelnet Methods
	Connect()
	Disconnect()
	Erase()
	Receive()
	Send()
	WLTelnet()

	Telnet Sample Code

	wlUDP Object
	wlUDP Properties
	document
	InBufferSize
	LocalHost
	LocalPort
	MaxDatagramSize
	NumOfResponses
	OutBufferSize
	Outfile
	ReceiveMessageText
	RequestedPackets
	Size
	Timeout

	wlUDP Methods
	Bind()
	Broadcast()
	Erase()
	Receive()
	Send()
	UnBind()
	WLUdp()

	UDP Sample Code

	Chapter 6.
XML Parser Object
	Methods
	Properties
	Example

	Chapter 7.
WebSocket Object
	Constructor
	Methods
	connect() (method)
	close() (method)
	send() (method)

	Events
	onmessage (evt)
	onerror (evt)
	onopen (evt)

	WebSocket Sample Code

	Appendix A.
 WebLOAD-supported SSL Protocol Versions
	SSL Handshake Combinations
	SSL Ciphers – Complete List

	Appendix B.
 WebLOAD-supported XML DOM Interfaces
	XML Document Interface Properties
	XML Document Interface Methods
	Node Interface Properties
	Node Interface Methods
	Node List Interface
	NamedNodeMap Interface
	ParseError Interface
	Implementation Interface

	Appendix C.
 HTTP Protocol Status Messages
	Informational 1XX
	Success 2XX
	Redirection 3XX
	Client Error 4XX
	Server Error 5XX

	Appendix D.
 WebLOAD–supported Character Sets
	Appendix E. Glossary

	Index

